Fundamentals of Logic No.7 Predicate Logic

Tatsuya Hagino

Faculty of Environment and Information Studies Keio University

2015/6/8

Limitation of Propositional Logic

- Propositional Logic
 - Each proposition is either true or false.
 - The truth value does not change.
 - The truth value does not depend of objects which are referred in the proposition.
- Socrates problem:
 - Socrates is a man.
 - All men are mortal.
 - Therefore, Socrates is mortal.
- In propositional logic:
 - p = "Socrates is a man"
 - q = "Socrates is mortal"
 - $p \Rightarrow q$?

Propositional Logic to Predicate Logic

- Extend logic to handle objects and express properties and relations of objects.
- Set of objects
 - Integer
 - Human
- Variable over a set of objects
 - object variable
 - *x*,*y*,*z*,...
- Name of object
 - object constant
 - Socrates, Pythagoras, 123, SFC, Keio, ...

Predicate

- Predicate
 - Object x has property P: P(x)
 - Relation R holds between object x and object $y{:}\ R(x,y)$

• $Q(x_1, x_2, \ldots, x_n)$

- Q holds for objects x_1, x_2, \ldots, x_n
- Q is a predicate with n variables.

• P(x) = "x is a man"

- P(Socrates) = "Socrates is a man"
- P(Pythagoras) = "Pythagoras is a man"
- P(Taro) = "Taro is a man"

Quantifier

• P(x)

- Which x makes P hold?
- Does it hold for any x?
- Does it only hold for some x?
- Quantifier
 - $\forall x P(x)$
 - Universal quantifier
 - For all x, P(x) holds.
 - $\exists x P(x)$
 - Existential quantifier
 - For some x, P(x) holds.
 - There exists x which makes P(x) hold.
- Q(x) = "x is mortal"
 - $\forall xQ(x) =$ "Everybody is mortal"
 - $\exists x Q(x) =$ "Someone is mortal", "There is someone who is mortal"

Predicate Logic

• Predicate Logic

- Use predicates instead of propositional variables.
- Four logical connectives: $\land,\lor,\Rightarrow,\neg$
- Two quantifiers: \forall, \exists
- Socrates example: P(x) = "x is a man", Q(x) = "x is mortal"
 - P(Socrates) = "Socrates is a man"
 - $\forall x(P(x) \Rightarrow Q(x)) =$ "All men are mortal"
 - Q(Socrates) = "Socrates is mortal"
- Math example: P(x) = "x is a prime number bigger than 2", Q(x) = "x is an odd number"
 - P(7) = "7 is a prime number bigger than 2"
 - $\forall x(P(x) \Rightarrow Q(x)) =$

"Any prime number bigger than 2 is an odd number"

• Q(7) = "7 is an odd number"

Example (1)

- Let S(x) and M(x) be as follows:
 - S(x) = "x is an SFC student"
 - M(x) = "x likes mathematics"
- Write the meaning of the following formulae:
 - $\forall x(S(x) \Rightarrow M(x)) =$ "All the SFC students
 - $\exists x(S(x) \land M(x)) =$ "There is an SFC student

•
$$\forall x(S(x) \Rightarrow \neg M(x)) =$$

•
$$\neg \forall x(S(x) \Rightarrow M(x)) =$$

•
$$\forall x \neg (S(x) \Rightarrow M(x)) =$$

,,

,,

,,

,,

,,

Example (2)

• Let L(x, y) mean "x likes y". Write the meaning of following formulae?

• $\forall xL(Taro, x) = ``Taro likes$	"
• $\exists x L(Taro, x) = ``Taro likes$	"
• $\forall xL(x, Taro) = ``$	"
• $\exists x L(x, Taro) = ``$	"
• $\forall x \forall y L(x,y) = $ "	"
• $\forall x \exists y L(x, y) = $ "	"
• $\exists x \forall y L(x,y) = $ "	"
• $\exists y \forall x L(x,y) = $ "	"
• $\exists x \exists y L(x,y) = $ "	"
• $\forall x \forall y (S(x) \Rightarrow L(x,y)) = $ "	
• $\forall x \forall y (S(y) \Rightarrow L(x, y)) = $ "	
• $\forall x (\forall y L(x, y) \Rightarrow S(x)) = $ "	

" "

Language for Predicate Logic

- A set of symbols for predicate logic is called *language*.
 - It is different from linguistic language.
 - It is closer to vocabulary.
- A language $\mathcal L$ of predicate logic consists of the followings:
 - 1) Logical connectives: $\land, \lor, \Rightarrow, \neg$
 - (2) Quantifiers: \forall, \exists
 - (3) Object variables: x, y, z, \ldots
 - (4) Object constants: c, d, \ldots
 - (5) Function symbols: f, g, \ldots
 - (6) Predicate symbols: P, Q, \ldots

Terms

- Terms of a language \mathcal{L} is defined as follows:
 - (1) Object variables and constants of \mathcal{L} are terms.
 - (2) For a function symbol f of m variables (arity m) in L, if t₁,..., t_m are terms, f(t₁,...,t_m) is also a term.
- Example: Natural Number Theory
 - Object constants: 0, 1, etc.
 - Function symbols: S(x), +, ×, etc.
 - Predicate symbols: =, <, etc.
 - Terms
 - x
 - 0
 - $S(x) + (1 \times S(S(y)))$

Logical Formulae

- Logical Formulae of \mathcal{L} is defined as follows:
 - (1) For a predicate symbol P of n variables in \mathcal{L} , if t_1, \ldots, t_n are terms, $P(t_1, \ldots, t_n)$ is a formula (*atomic formula*).
 - (2) For formulae A and B, $(A \wedge B)$, $(A \vee B)$, $(A \Rightarrow B)$ and $(\neg A)$ are formulae.
 - (3) For a formula A and an object variable x, $(\forall xA)$ and $(\exists xA)$ are formulae.
- Example: Natural Number Theorem
 - $\exists z(x \times z = y)$
 - $\forall x \forall y ((x + S(y)) = S(x + y))$

Bound and Free Variables

- Bound variables
 - In $\exists z(x \times z = y)$, z of $x \times z = y$ is bound by $\exists z$.
 - Bound variables can be renamed without changing the meaning.
 - $\exists w(x \times w = y)$
- Variables which are not bound are free variables
 - In $\exists z(x \times z = y)$, x and y are free variables.
- Variables may be bound or free depending on their occurrence.

•
$$\exists z(x \times z = y) \land \exists y(x + x = y)$$

Closed Formulae

- When a logical formulae A do not contain free variables, A is called a *closed* logical formulae.
 - $\forall x(S(x) \Rightarrow \forall yL(x,y))$
- If x_1, \ldots, x_n are the free variables of a logical formulae A,
 - $\forall x_1 \cdots \forall x_n A$
 - is called *universal closure* of A.
- In mathematics, universal quantifiers are often omitted.
 - Commutative law of addition: x + y = y + x
 - Its universal closure: $\forall x \forall y (x + y = y + x)$

Assignment of Terms

- For a logical formula A, when all the free occurrence of x are replaced with a term t, it is called an *assignment* of t to x.
 - A[t/x]
- Example:
 - Let A be $\exists z(x \times z = y)$.
 - A[w/y] is $\exists z(x \times z = w)$.
 - A[x/y] is $\exists z(x \times z = x)$.
 - A[(x+w)/x] is $\exists z((x+w) \times z = y)$.
- If bound relationship is affected by an assignment, the bound variable must be changed before the assignment.
 - A[z/y] is not $\exists z(x \times z = z)$, but $\exists w(x \times w = z)$.
 - In general, $(\forall x A)[t/x]$ is $\forall u(A[u/x][t/x])$ where u is a variable which does not occur in A or t.

Sub-formulae

- Define sub-formulae similar to propositional logic.
 - (1) A is a sub-formula of A.
 - (2) A and B are sub-formulae of $(A \land B)$.
 - (3) A and B are sub-formulae of $(A \lor B)$.
 - (4) A and B are sub-formulae of $(A \Rightarrow B)$.
 - (5) A is a sub-formula of $(\neg A)$.
 - (6) For any term t, A[t/x] is a sub-formula of $\forall xA$.
 - (7) For any term t, A[t/x] is a sub-formula of $\exists xA$.
- When a formula contains quantifiers, there are infinitely many sub-formulae.
 - Sub-formulae of $\forall xQ(x)$ are $\forall xQ(x)$, Q(Socrates), Q(Taro), Q(mother(Taro)), ...

Summary

• Predicate Logic

- Limitation of propositional logic
- Description about objects
- Logical Formulae for Predicate Logic
 - Language
 - Terms
 - Logical Formulae
- Quantifiers
 - Bound and free variables
 - Closed formulae
 - Universal closure