Optimization Theory (DS2) Lecture #3
Three Kinds of Certificates, Standard Equality
Form, and a Simplex Iteration

November 7, 2016

Abstract

Today we are going to prepare for the simplex algorithm. We will cover Secs.
2.1 to 2.3 of the textbook.

Text and examples adapted from A Gentle Introduction to Optimization.

1 Review

Recall, last time we worked on how to formulate problems, going from a word descrip-
tion of a problem to a formal description including Variables, Constraints, and the
Objective Function. Once you have those, you can produce a formal description that
says, “Maximize (some function) such that (s.t.) (some constraints hold).”

2 Certificates

As the book says, “By definition, an LP [linear program] has only one optimal value,
but it may have many optimal solutions.” However, it may not have a solution at all!
Or, it may have a solution that runs off to infinity. So, there are three possible cases we
would like to distinguish:

1. our problem is infeasible (has no solution),
2. it has one or more optimal solutions, or

3. itis unbounded.

Also, in the case where we have a solution that we think is optimal, it would be
nice to be able to prove that to others. We will see that, once the problem is prop-
erly formulated, there are one or two vectors we can present that will show which of
these cases holds. These vectors are called certificates of infeasibility, optimality, or
unboundedness, respectively.



2.1 Infeasibility

We only need to look at the constraints, not the objective function, and demonstrate
that they are mutually exclusive: by the time you take them all into account, there is no
space left for a working solution at all.

Consider the constraints of a problem (P),
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To show there is no solution, we create the equation
ry +4xe + 223 = —1 (®)]

and from this, we are done: all of the coefficients of the x; are positive (or non-negative,
including x4), and all of the x; are constrained to be non-negative, so there is no way
this can be solved!

So how do we create that equation? Via the usual algebraic manipulation of the
equations above:

1 x (Eq. 1) — 2 x (Eq. 2) + 1 x (Eq. 3). (6)

If we write down those values as y; = 1, yo = —2, y3 = 1, then we can create the
vector

g: (ylay27y3)T = (15_231)T' (7)

The vector 7 is said to be our certificate of infeasibility.
We can write this down as .
AZ = b, ®)
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We multiply both sides by the vector T to get
JTATL =70, (12)

Insert numbers for ¢/ into that equation, and you will get an equation with all non-
negative values on the left and a negative value on the right. Formally,



Let A be a matrix and b be a vector. Then the system
AZ=0,7>0 (13)
has no solution if there exists a vector ¥/ s.t.
1. yTA > 6T, and
2. §Tb < 0.
Farkas’ lemma tells us that there exists a certificate of infeasibility for every infea-

sible system.

2.2 Unbounded Linear Programs

Consider the already-formulated LP
max{z(Z) =cT¥: AT = b, T > 0}, (14)

where
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S
I
[
N

(16)

o
Il
w

a7

(18)

8
I
I

w

If we pick vectors z, = (2,0,0,1,2)T and d= (1,2,1,0,0)T and define a function
T(t) = @, + td, (19)

then we can show that
CTE(t) = ¢Tay, + 2t, 20)

and so as t — 00, so does our objective function. Formally,

Suppose there exists a problem (P) as above, with a feasible solution
., and a vector d such that:



1. Ad = 6, and
2. JE 6 and
3. &7d > 0,
then (P) is unbounded.

The pair of vectors d and T, together are our certificate of unboundedness.

2.3 Optimality
See Sec. 2.1.3.

3 Standard Equality Form (SEF)

An LP is in standard equality form if:
1. it is a maximization problem;
2. other than the non-negativity constraints, all constraints are equalities; and
3. every variable has a non-negativity constraint.

That is, it can be written in the form

max{z(Z) = 7% : AT = b, & > 0}. (21)
Consider the LP
max(1, —2,4)(z1, 29, x3)7 (22)
subject to

1 5 3 1 > 5
2 -1 2 T2 < | 4 (23)

1 2 -1 x3 = 2
T1,T2 > 0. (24)

x3 is called a free variable since it doesn’t have a non-negativity constraint. But a
lot of our techniques and especially proofs depend on that. So, we introduce two new
variables, r3 and 23, set z3 = w3 — x5, and add constraints 3, 3 > 0. After some
algebra, you get

maX(17 _2a 45 _4) (xly x2, x‘;—v x3_)T (25)
subject to
1 5 3 -3 il > /5
2 -1 2 -2 Tl < | 4 (26)
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Getting closer, but we’re still not quite there; we don’t have equalities everywhere
yet. So we introduce two slack variables x4 and x5. Now we get

max(1, 2,4, —4,0,0) (21,22, 75, 75, 74, 75)7 (28)
subject to
T
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$1,$2,x;,xf;,x4,x5 Z 0 (30)

and we’re finally in SEF! Note that when we replaced a < constraint (second line of
Eq. 26), we added a 1 to the array, and when we replaced a > constraint (first line of
Eq. 26), we added —1 to the array. This helps us keep our non-negativity constraint for
all variables.

4 A Simplex Iteration

The idea of the simplex algorithm is pretty simple: repeat a simplex operation until no
more simplex operations improve the result, and you’re done. But there’s a catch: the
second simplex operation might partly undo the work of the first! So there is something
you have to do in order to make that second one work, and that’s what we’ll see next
time.

...Oh, wait, we haven’t talked about a single simplex operation. Okay, let’s talk
about that. (n.b.: It’s not really a simplex operation, in the mathematical sense, but it’s
related, and the name has stuck.)

Consider the following LP in SEF:

max 2(%) = (2,3,0,0,0)(x1, 2, T3, 24, 25)7 3D
subject to
1 1 1 0 0 6
2 1010 |z=|[ 10 (32)
-1 1 0 0 1 4
T1,T2,T3,T4,T5 2 0. (33)

Given the solution z;, = (0,0,6,10,4)T (easy to see that’s a solution — look at the
right side of the array), z(27) = 0.
Now try increasing x1, choosing 1 = t. A little algebra gives

I3 6 1
Is 4 -1



from which we get

1 6
tf 2 | <| 10 (35)
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which gives us the limiting inequality ¢ < 10/2 = 5. Setting t = 5,2/ = (5,0, 1,0,9)T
and z(z') = 10.

Unfortunately, we can’t yet apply the same trick to s, so that’s the topic for next
time!

5 Homework

See the separate file uploaded to SFS.

1. Exercise 1 (parts a, b) in Sec. 2.1.
2. Exercise 1 (part a) in Sec. 2.2.

3. Exercise 1 (all parts) in Sec. 2.3.



