
Optimization Theory (DS2) Lecture #8
A∗ Algorithm, Duality, and Minimum Spanning

Tree Via Linear Algebra

November 28, 2016

Abstract

Today we are going through the A∗ algorithm, which doesn’t appear in the
textbook, duality (which does), and looking at MSTs (which don’t) using duality
and LA.

Some text and examples adapted from the paperback edition of A Gentle Introduc-
tion to Optimization, B. Guerin et al.

1 Reorganizing the Semester
Now that we are about halfway through the semester, we can see a little more clearly
the complete picture of where we are headed:

• Lec. 1: Introduction

• Basics of Linear Programming

– Lec. 2: Examples of Linear, Integer and Graph Problems (formulating
formal descriptions of problems)

– Lec. 3: Three Kinds of Certificates, Standard Equality Form, and a Simplex
Iteration

– Lec. 4: The Heart of the Simplex Algorithm (bases and canonical forms)
In my opinion, this is the hardest week of the semester!

– Lec. 5: Sticking a Stake in the Heart of the Simplex Algorithm

• Graph Algorithms

– Lec. 6: Basic Ideas of Graphs, Dijkstra’s Shortest Path First Algorithm

– Lec. 7: Several Minimum Spanning Tree Algorithms

– Lec. 8: A∗ Algorithm, Duality, and Minimum Spanning Tree Via Linear
Algebra

1

– Lec. 9: Minimum Weight Bipartite Matching (and more Duality)

– (Sadly, we are going to skip some important problems such as set cover,
and min cut max flow. Semester projects, perhaps?)

• Integer Problems

– Lec. 10: The Knapsack Problem

– (Sadly, we are going to skip many important problems and solutions here!)

• Computational Complexity

– Lec. 11: Basic Ideas of Computational Complexity

• Non-Linear Programming (NLP) and Advanced Techniques
Warning: These lectures require a little basic calculus! But don’t worry too
much if you’re not up on your derivatives; there will be no required homework
on these lectures.

– Lec. 12: Basics: Finding a Min/Max of a Function (Derivatives, Gradient
Descent, Newton’s Method)

– Lec. 13: Deterministic Exact, Deterministic Heuristic, and Random Algo-
rithms (AI-like methods, more on computational complexity)

– Lec. 14: Pareto Optimality and Wrapping Up the Semester

2 Semester Projects
In the English Wikipedia page on the simplex algorithm, I like the explanation of the
history, and I like the images, but the explanation of tableaus and pivots is not quite the
way we’re solving things, so I wouldn’t invest too much time in trying to understand
that.

The Japanese page on the simplex algorithm is actually poor. I would gladly accept
a student rewriting that Wikipedia page as an end-of-term project! In fact, I encourage
it! Any volunteers?

You should expect that your project will take 10-20 hours; if it takes less than that,
it’s too lightweight.

Types of projects:

1. Create or improve an optimization-related Wikipedia page, such as:

(a) the Japanese page on simplex

(b) the Indonesian page on just about anything

Languages other than English, Japanese or Indonesian require prior approval,
and will require an outside evaluator.

2. 3D print a teaching tool I can keep, e.g. a polytope for a specific linear problem,
or a 2D optimization surface with a max, a min, and a saddle point.

2

3. A compiler that takes in graphviz and outputs OpenSCAD. Ideally, this would
be a plugin for the existing graphviz tools.

4. Find and solve a medium sized optimization problem using one of the techniques
from class. This should be a large enough problem that creating the formal
definition is non-trivial, and presumably the solution will require the use of some
computer method. For this, you may use existing tools, as the emphasis is on the
problem.

5. Implement one of the algorithms from class. Your choice of language. This is
not just learning to use some existing library!

6. Write a 5 page report on advanced optimization (e.g., one of the topics from the
last two weeks of the semester).

7. Work on one of the sections from the textbook that we didn’t cover.

3 Interlude: Most Important Algorithms of the 20th
Century

The Society for Industrial and Applied Mathematics (SIAM) named the top ten algo-
rithms of the 20th century. Simplex and Metropolis (arguably the first important Monte
Carlo algorithm) are two of them.

There is also the book, 9 Algorithms That Changed the Future, by John Mac-
Cormick, but it’s more of a list of problems than algorithms.

Marcos Otero also created a list in reply to a list that I don’t actually like. Even
Oteros’ is more of a list of problems than algorithms.

4 A∗ Algorithm
I don’t know if A∗ is the way that Google Maps or Ekitan solves your routing problem
to get here in the morning, but it could. Some people think of A∗ as an extension
to or generalization of Dijkstra’s shortest path algorithm, but it expands the range of
applications so much that I think of it as a separate algorithm.

In Dijkstra’s algorithm, the frontier (or “open set”) consists of a set of nodes with
links headed out from there, the links currently under consideration for addition to our
path(s). We select the next link based on

min(d(n) + ce), n ∈ F, e ∈ edges of n (1)

for d() being the distance from the origin to the node n, ce being the cost of edge e
from node n. That is, we add a new node to the frontier by selecting the next node with
the lowest total cost back to our origin.

Putting it another way, we can talk about f(n), for all n ∈ Succ(F), the set of
possible successor nodes, the candidates to be added to our tree. (This will be a little
easier for talking about A∗.)

3

Then we can modify f(n) to be

f(n) = g(n) + h(n) (2)

where g(n) is the distance to the node, and h(n) is a heuristic for estimating the dis-
tance from n to the destination.

A∗ is fantastically useful when Dijkstra fails us in practice, because it guides the
set of things we look at next for efficiency, without ultimately preventing us from find-
ing the solution even in “bad” cases. It is also good when our “graph” is effectively
determined dynamically, as long as we can limit the set of things we add at each step.

5 Duality, marking a brief return to linear algebra

5.1 Examples
There are several cases of duality. Let’s look at a couple. The minimization form of
the linear program:

min z(~x) = ~c ᵀ~x (3)

subject to

A~x ≥ ~b (4)

~x ≥ ~0 (5)

has a dual program

max z′(~y) = ~b ᵀ~y (6)

subject to

Aᵀ~y ≤ ~c (7)

~y ≥ ~0. (8)

The superficially similar problem where the ≥ in Eq. 4 is replaced with = has a
different dual:

min z(~x) = ~c ᵀ~x (9)

subject to

A~x = ~b (10)

~x ≥ ~0 (11)

has the dual program

max z′(~y) = ~b ᵀ~y (12)

4

subject to

Aᵀ~y ≤ ~c (13)
~y free. (14)

Note the difference in the last lines of the two dual problems.
In the textbook, the primal problem is the maximization problem, called P or Pmax

and the minimization problem is the dual problem, called D or Pmin, so technically our
first problem above is actually the dual and its dual is the primal.

5.2 Constructing the dual
Personally, I found Table 4.1 in the textbook to be cryptic. Let me try to reconstruct it
for you. In each block below, replace the “ ” place with the symbol below it, then read
across for what it generates in the dual problem. For example, if A~x = ~b, read down
to “= constraint” and across to “free variable” to learn that the yi corresponding to a
particular line in the set of constraints having an equals sign results in a new variable
in ~y that is a free variable.

P (Pmax) D(Pmin)

A~x ~b ~y ~0
≤ constraint ≥ 0 variable
= constraint free variable
≥ constraint ≤ 0 variable

~x ~0 Aᵀ~y ~c
≥ 0 variable ≥ constraint
free variable = constraint
≤ 0 variable ≤ constraint

5.3 A couple of comments
The dual of the dual of a problem is the original problem. (If it’s not, you’ve done
something wrong, such as the problem wasn’t properly specified in the first place.)

The weak duality theorem says that the objective function value for the maximiza-
tion problem P is always less than or equal to the objective function for the minimiza-
tion function. If they are equal, then you have found optimal solutions for both. It also
implies that if the primal is unbounded, then the dual is infeasible, and vice-versa.

The strong duality theorem says that if the primal has a bounded optimal value for
the objective function z(~x), then the the dual also has an optimal value for its objective
function z′(~y), and in fact, those optimal values are always the same!

6 Minimum spanning tree via LP (and Duality)
We’re going to try this on the graph we used last week, which consists of 9 nodes and 14
links, so it’s bit of a large problem to do by hand, but I want you to see the techniques.

5

�

�

��
�

�

��

��

��

�

�

�

�� �

�

��
�

�

�

�

�

Figure 1: Our figure from Intro to Algorithms.

Although we’re not going to cover everything you can do to graph problems using
matrices, I also want you to get the idea that matrices can be used in graph problems.

A complete, proper formulation via linear programming would involve an expo-
nential number of constraints. Basically, you write out every proper, non-empty subset
of vertices and create a constraint that says that there must be at least one edge connect-
ing a node inside the subset with a node outside the subset. For a graph with v = |V |
vertices, this would be 2v − 2 constraints. For our graph in Fig. 1, that would be 510
constraints, and I’m not planning on writing those out by hand! Even for a computer,
such exponential growth very quickly leaves the ream of the possible.

Instead, I want to demonstrate the principles by creating a hybrid approach here. (I
haven’t seen this approach written down anywhere before. This is my own formulation,
but I have no doubt both that it is correct and has been discovered before.) Basically,
we’re going to do Boruvka’s algorithm where each iteration is done using an LP.

6.1 The program
The minimization form of the problem (note that our x and y here are swapped relative
to the above):

min z(~x) = ~c ᵀ~x (15)

subject to

A~x ≥ ~b (16)
~x ≥ 0, ~x integer (17)

6

where

~cᵀ = (4, 8, 11, 8, 7, 1, 2, 6, 7, 4, 2, 14, 9, 10) (18)
~xᵀ = (xab, xah, xbh, xbc, xhi, xhg, xic, xig, xcd, xcf , xgf , xdf , xde, xfe) (19)

Aᵀ =



a b c d e f g h i

ab 1 1 0 0 0 0 0 0 0

ah 1 0 0 0 0 0 0 1 0

bh 0 1 0 0 0 0 0 1 0

bc 0 1 1 0 0 0 0 0 0

hi 0 0 0 0 0 0 0 1 1

hg 0 0 0 0 0 0 1 1 0

ic 0 0 1 0 0 0 0 0 1

ig 0 0 0 0 0 0 1 0 1

cd 0 0 1 1 0 0 0 0 0

cf 0 0 1 0 0 1 0 0 0

gf 0 0 0 0 0 1 1 0 0

df 0 0 0 1 0 1 0 0 0

de 0 0 0 1 1 0 0 0 0

fe 0 0 0 0 1 1 0 0 0



(20)

~b = ~1 (21)

Note that A is written in transpose, that was easier here. A actually has one column
for each edge and one row for each vector, though we’re going to swap them and use it
the way it’s written in just a minute.

Let’s look at this in detail. Every member of the vector ~x should be either 0 or 1,
either we use the link or we don’t. Then the objective function will end up being the
sum of the costs of the links that are in use, which are represented in ~c. We constrain
each node to having at least one link, which means that ~x has to have a 1 in some entry
corresponding to a 1 in each column of Aᵀ.

Also, note that since you can’t use half a link, we are insisting that ~x (or ~y) all be
integers, but we haven’t yet really discussed integer problems. Instead, what we will
solve here is called the linear relaxation of the integer problem.

On the first iteration, we should get the result

~x ᵀ = (1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0). (22)

That is, our set of links we add in the first iteration of Boruvka’s algorithm should
be {ab, hg, ic, cd, gf, de}.

After this iteration, we now have several trees, called a forest:

{{a, b}, {c, d, e, i}, {f, g, h}}. (23)

7

Now we can rewrite the program looking for the cheapest connections between each
tree:

min z(~x) = ~c ᵀ~x (24)

subject to

A~x ≥ ~b (25)
~x ≥ 0, ~x integer (26)

where

~cᵀ = (8, 11, 8, 7, 6, 4, 14, 10) (27)
~xᵀ = (xah, xbh, xbc, xhi, xig, xcf , xdf , xfe) (28)

Aᵀ =



ab cdei fgh

ah 1 0 1

bh 1 0 1

bc 1 1 0

hi 0 1 1

ig 0 1 1

cf 0 1 1

df 0 1 1

fe 0 1 1


(29)

6.2 And its dual
Our program has the dual

max z′(~y) = ~b ᵀ~y (30)

subject to

Aᵀ~y ≤ ~c (31)

~y ≥ ~0, ~y integer. (32)

7 Interlude: the Adjacency and Distance Matrices
Note that the matrix A above is related to but not the same as the adjacency matrix for
a graph, which in a v × v square matrix just denoting which nodes are connected to
each other, also generally denoted A (for adjacency):

8

A =



a b c d e f g h i

a 0 1 0 0 0 0 0 1 0

b 1 0 1 0 0 0 0 1 0

c 0 1 0 1 0 1 0 0 1

d 0 0 1 0 1 1 0 0 0

e 0 0 0 1 0 1 0 0 0

f 0 0 1 1 1 0 1 0 0

g 0 0 0 0 0 1 0 1 1

h 1 1 0 0 0 0 1 0 1

i 0 0 1 0 0 0 1 1 0


(33)

The distance matrix (sometimes denoted M) replaces those simple 1/0 values with
the distance (cost):

M =



a b c d e f g h i

a 0 4 0 0 0 0 0 8 0

b 4 0 8 0 0 0 0 11 0

c 0 8 0 7 0 4 0 0 2

d 0 0 7 0 9 14 0 0 0

e 0 0 0 9 0 10 0 0 0

f 0 0 4 14 10 0 2 0 0

g 0 0 0 0 0 2 0 1 6

h 8 11 0 0 0 0 1 0 7

i 0 0 2 0 0 0 6 7 0


(34)

Note that A = Aᵀ and M = Mᵀ, which is true for undirected graphs but not
directed ones. In this class, we are limiting ourselves entirely to undirected graphs.

These two matrices have many uses; you can determine, for example, how closely
two graphs resemble each other.

Matrix representations of graphs are used for e.g. the original Page Rank algorithm
that is the heart of Google’s search.

8 Homework
See the separate file uploaded to SFS.

9

