
Minimum Cost Perfect Matching

December 6, 2016

Abstract

This is pseudocode for the Hungarian Algorithm for Minimum Cost Perfect
Matching in Bipartite Graphs, adapted from the paperback edition of A Gentle
Introduction to Optimization, B. Guerin et al. This finds subgraphs of the original
bipartite graph (which is often a complete bipartite graph), and uses the Perfect
Matching algorithm as a subroutine to figure out if there is a perfect matching, in
which case we are done.

NH(S) is the set of neighbors of the set S on the graph H . One thing I do not like
about this particular pseudocode is that the interface with the perfect matching subrou-
tine is imprecise, and this algorithm depends on side effects from that subroutine. The
subroutine might return (a) a new (larger) matching M , (b) a new (larger) tree T , or (c)
a deficient set for that particular graph H .

1

Algorithm 3.5 Minimum cost perfect matching in bipartite graphs (fast version)
Input : Bipartite graph G = (V,E) with bipartition U,W where

|U | = |W | ≥ 1
Output: A minimum cost perfect matching M or a deficient set S

1 M := ∅
2 T := ({r},∅) where r ∈ U is any M -exposed vertex
3 ~yv := 1

2 min {ce : e ∈ E} , for all v ∈ V
4 while (1) do
5 {
6 Construct graph H (a subset of the original graph G)
7 with vertices V and edges {uv ∈ E : cuv = ~yu + ~yv}
8 Invoke the subroutine (Algo. 3.4) with H ,M , and T
9 if outcome (a) of subroutine occurs then

10 {
11 if M is a perfect matching of H then
12 {
13 stop (M is minimum cost perfect matching of G)
14 }
15 }
16 else if outcome (c) of subroutine occurs then
17 {
18 Let S := B(T)
19 if all edges of G with an endpoint in S have an endpoint in NH(S) then

{ stop (G has no perfect matching) ; }
20 Otherwise, adjust the costs to create a new zero, and loop

ε = min{cuv − ~yu − ~yv : u ∈ S, v /∈ V (T)}
21

~yv :=

 ~yv + ε for v ∈ S
~yv − ε for v ∈ NH(S)
~yv otherwise

(1)

22 }
23 else if outcome (b) of subroutine occurs then
24 {
25 Just loop again with augmented path
26 }
27 }

2

