慶應義塾大学理工学部 物理情報工学科 Keio University

Trading Classical for Quantum Computation Using Indirection

Rodney Van Meter rdv@tera.ics.keio.ac.jp

Any software problem can be solved by adding another layer of indirection. Steven M. Bellovin

Goa

Quantum computation is slow, expensive, and error-prone. By doing some of the work classically, we can lower the total cost of the computation.

Basic Idea

Use part of superposition |x> as an index into a table. For Shor's algorithm¹, the table contains classically computed parts of the modular exponentiation of *a*. This allows us to reduce the number of multiplications necessary in the quantum domain by a factor of w, in exchange for 2^w more classical multiplications.

UO . ect

р

Pointers (memory addresses) and array indices are the most common forms of indirection. Indirection saves space, allows sharing of objects, and allows data to be filled in later in the computation.

Modular Exponentiation in Shor's Algorithm

Modular exponentiation is the dominant cost in Shor's algorithm. *n* classical modular multiplications and *n* quantum modular multiplications are used in the standard method.

Let $d_i = a^{2^j} \mod N$ d_i values are computed classically³. To factor the *n* bit number N, we must evolve to hold:

 $\frac{1}{\sqrt{a}} \sum_{j=0}^{q-1} |a^j \mod N\rangle$

 $t_{0}(x)$

Binary expansion of
$$x : x_{n-1} x_{n-2} \dots x_0$$

MS+S 2004

$$a^x \mod N = \prod_{j=0}^{n-1} d_j^{x_j} \mod N$$

Iterating By Words Instead of Bits

Divide *x* into *l* words of $x_{n-1} x_{n-2} \dots x_{2w} x_{2w-1} \dots x_{w} x_{w-1} \dots x_{0}$ length *w*, l = n/w $|t_k(x)\rangle$ will be index into array b. $t_{\mu}(x)$ For iteration k, $b_{m,k} = a^{m2^{wk}} \mod N$ $a^{x} \mod N = \prod_{i=0}^{l-1} b_{t_{i}(x), j} \mod N$

For the superposition |x>, this becomes

- Indirection may be an arbitrary number of levels deep; we are • ----
 - using only one, for the moment.
 - Arguments by value: add 4,3 (zero levels of indirection)
 - Arguments by reference: add this, that (one level of indirection)

Quantum-Addressable Classical Memory (QACM)

The best implementation will use an array that holds classically-computed values, and allows a superposition of addresses to be used to retrieve a superposition of those values. We call this a *quantum-addressable classical memory* (QACM)².

Address superposition used to steer reader to appropriate data cells

Putting It All Together: the Algorithm

1) Initialize |product> to 1

- 2) Classically calculate initial $b_{i,0}$ table values for all $j, 0 \le j \le 2^w$
- 3) For *k* from 0 to *l*-1, do
- a) In quantum domain, use $|t_{\mu}(x)\rangle$ as index into b,
- $|c> = |b[|t_{\mu}(x)>]>$
- b) multiply |*product*> by |c>, modulo N b) Update *b* array: classically multiply each element by itself (square it, modulo N) w times to create $b_{i,k+1}$

One-Time Running Time

 $lw2^w = n2^w$ classical modular multiplications and l = n/w quantum multiplications (compared to *n* classical and *n* quantum using standard algorithm)

Total Cost and Selecting Word Size w

We use |b[|t>]> to indicate the superposition retrieved from the array b by using |t> as the index. Our QACM will need to hold 2^w entries of *n* bits each to speed up modular exponentiation of an *n* bit number by a factor of *w*.

References

1) P. Shor, "Polynomial time algorithms for prime factorization and discrete logarithms on a quantum computer", SIAM J. Comp., 1997.

2) M. Nielsen & I. Chuang, Quantum Computation and Quantum Information, pp. 266-268, Cambridge University Press, 2000.

3) N. Kunihiro, "Practical running time of factoring by quantum circuits", EQIS 2003. 4) A. Barenco et al, "Approximate Fourier transform and decoherence", PRA, 1996.

Minimum cost depends on ratio of quantum to classical multiplication cost. Quantum cost must factor in repetitions of Shor's algorithm. Curve can be used for different definitions

of cost, e.g., economic, or wall clock time. (Graph assumes zero QACM cost.)

Repetition and Reuse

Barenco *et al* showed that the probability of success with Shor's algorithm may be 10⁻⁵ for sizes of a few kilobits⁴.

When repeating the algorithm, the classical parts can be saved and reused. The quantum portion of the exponentiation must be redone.