Trading Classical for Quantum Computation Using Indirection Rodney Van Meter rdv＠tera．ics．keio．ac．jp MStS 2004

Any software problem can be solved by adding another layer of indirection． Steven M．Bellovin

Goal

Quantum computation is slow，expensive，and error－prone． By doing some of the work classically，we can lower the total cost of the computation．

Basic Idea

Use part of superposition $\mid x>$ as an index into a table． For Shor＇s algorithm ${ }^{1}$ ，the table contains classically computed parts of the modular exponentiation of a ．This allows us to reduce the number of multiplications necessary in the quantum domain by a factor of w ，in exchange for 2^{w} more classical multiplications．
Pointers（memory addresses）and array indices are the most
common forms of indirection．Indirection saves space，allows
sharing of objects，and allows data to be filled in later in the
computation．

Quantum－Addressable Classical Memory（QACM）

The best implementation will use an array that holds classically－computed values， and allows a superposition of addresses to be used to retrieve a superposition of those values．We call this a quantum－addressable classical memory（QACM）${ }^{2}$ ．

We use $\mid b[\mid t>]>$ to indicate the superposition retrieved from the array b by using $\mid t>$ as the index．Our QACM will need to hold 2^{w} entries of n bits each to speed up modular exponentiation of an n bit number by a factor of w ．

References

Modular Exponentiation in Shor’s Algorithm

Modular exponentiation is the dominant cost in Shor＇s algorithm． n classical modular multiplications and n quantum modular multiplications are used in the standard method

Let $d_{j}=a^{2^{j}} \quad \bmod N$
d_{j} values are computed classically ${ }^{3}$ ．
$\substack{\text { To factor the } n \text { bit } \\ \text { number N，we must } \\ \text { evolve to hold：}}$$\quad \frac{1}{\sqrt{q}} \sum_{j=0}^{q-1}\left|a^{j} \bmod N\right\rangle$ Binary expansion of $x: x_{n-1} x_{n-2} \cdots x_{0}$
$a^{x} \bmod N=\prod_{j=0}^{n-1} d_{j}^{x_{j}} \bmod N$

Iterating By Words Instead of Bits

Divide x into l words of
length $w, \quad l=n / w$
$\left|t_{k}(x)\right\rangle$ will be index into array b ．
For iteration $k, \quad b_{m, k}=a^{m 2^{n * *}} \bmod N$
$x_{n-1} x_{n-2} \ldots x_{2 w} x_{2 w-1 \ldots} x_{w} x_{w-1} \ldots x_{0}$
$a^{\star} \bmod N=\prod_{j=0}^{l-1} b_{t,(x), j} \bmod N$

For the superposition $|x\rangle$ ，this becomes

$$
\frac{1}{\sqrt{q}} \sum_{x=0}^{q-1}\left|a^{x} \bmod N\right\rangle=\frac{1}{\sqrt{q}} \sum_{x=0}^{q-1}\left|\prod_{j=0}^{l-1} b_{t_{j}}(x), j \bmod N\right\rangle
$$

Putting It Al｜Together：the Algorithm

1）Initialize｜product＞to 1
2）Classically calculate initial $b_{j, 0}$ table values for all $j, 0<=j<2^{w}$
3）For k from 0 to $l-1$ ，do
a）In quantum domain，use $\mid t_{k}(x)>$ as index into b ， $\left.|c>=| b\left[\mid t_{k}(x)>\right]\right\rangle$
b）multiply｜product $>$ by $\mid \mathrm{c}>$ ，modulo N
b）Update b array：classically multiply each element by itself （square it，modulo N）w times to create $b_{j, k+1}$

```
                                    One-Time Running Time
lw\mp@subsup{2}{}{w}=n\mp@subsup{2}{}{w}\mathrm{ classical modular multiplications and}
l=n/w}\mathrm{ quantum multiplications
(compared to }n\mathrm{ classical and }n\mathrm{ quantum using standard algorithm)
```

Total Cost and Selecting Word Size w

		Entries in b	Cost
Q：C cost ratio Optimum w	array	reduction	
1000	6	64	4.3 x
$1.00 \mathrm{E}+006$	13	8 K	11.7 x
$1.00 \mathrm{E}+009$	22	4 M	20.2 x
$1.00 \mathrm{E}+012$	31	2 G	29.1 x

Minimum cost depends on ratio of quantum to classical multiplication cost． Quantum cost must factor in repetitions of Shor＇s algorithm．
Curve can be used for different definitions of cost，e．g．，economic，or wall clock time （Graph assumes zero QACM cost．）

Repetition and Reuse
Barenco et al showed that the probability of success with Shor＇s algorithm may be 10^{-5} for sizes of a few kilobits ${ }^{4}$ ．
When repeating the algorithm，the classical parts can be saved and reused．The quantum portion of the exponentiation must be redone．

