

Applications of an Entangled Quantum Internet

Conference on Future Internet Technologies

Seoul, Korea

June 20, 2008

Rodney Van Meter (Keio) (rdv@sfc.wide.ad.jp)

Byung-Soo Choi (Ewha Woman's University) KE

Outline

- Quantum Key Distribution (QKD)
- Extending QKD: switching and trusting
- Quantum Repeaters
- What would a *distributed* quantum system be good for?
- What problems do we have to solve to get there?

What's a Qubit?

A qubit has two states that can be 0 and 1, such as horizontal and vertical polarization of a photon, or up and down spin of an electron.

What is this?

= |0> + |1>

A qubit can be in a superposition of both states at once!

Quantum Key Distribution

- "Tamper-evident" generation of shared random numbers
- Ideal use: generate bit stream for one-time pad

 Mostly, too slow for that

- Use as Diffie-Hellman replacement
- Still requires classical authentication

Quantum Key Distribution

- Basic use is <150km, dedicated point-to-point fiber, no amplifiers
- Can be optically switched & multiplexed w/ other data
- Longer distance requires:
 - trusting intermediate nodes, or
 - entanglement-based quantum repeaters
- Everything but repeaters in actual use now (thanks, Chip Elliott!)

Putting It All Together

The DARPA Quantum Network

Going the Distance

- Longer distance requires:
 - trusting intermediate nodes, or
 - entanglement-based quantum repeaters
- Quantum repeaters are not amplifiers
- Repeaters use teleportation
- Teleportation requires entangled states known as Bell pairs

Network Link Technology (Qubus)

Teleportation

1) Start with an EPR pair, and the qubit to be sent

- 2) Entangle locally at the source
- 3) Measure both qubits at source

4) Transmit classical results to destination

5) Local operations recreate original qubit

Quantum Repeater Operation

Bell State Measurement

Called *entanglement swapping*. Fidelity declines; you must *purify* afterwards

Purification

Nested Entanglement Swapping 🔀

Repeater Protocol Stack

Van Meter *et al.*, IEEE/ACM Trans. on Networking, Aug. 2009 (to appear)

Four-Hop Protocol Interactions

Van Meter et al., IEEE/ACM Trans. on Networking,

KEIO 150 Design the Future

15 Aug. 2009 (to appear)

What about Distributed QC?

- Two types: those that use entanglement, and those that don't
- Quantum key distribution can be done either way
- Entanglement can be either a *digital* resource, or a *gyroscopic* reference

Long-Distance Entanglement: Digital Uses

- Quantum Key Distribution
- Distributed leader election
- Same as classical distrib. systems: connect
 - People
 - Machines
 - Data/databases
 ...that are in distant locations

Gyroscopic (Physical) Uses

 \sum

- Entanglement can also be used to improve precision of measurements
 - Phase/timing
 - Directional information
- Better atomic clocks
- Quantum imaging

Gravity Waves?

Design the Futur

GW detector using "squeezed" states. Squeezed states are non-classical, but not entangled; can they be created using entanglement? Does long-distance entanglement help?

Problems to Solve

- Well, repeaters don't work yet... (QKD does)
- Lots of networking problems:
 - Routing of "messages"
 - Resource management in networks
 - Protocol design
 - Network Coding (Net. Info. Flow)
 - Effective use of wide-area, large-scale entanglement

Routing

Simple.

...but we don't yet know the cost metric.

Resource Management (QoS?)

Worse, fragile quantum memory means there is a *hard real time* component.

==>requires *circuit switching*??? (bottleneck likely is memory per node)

Protocol Design

O 15O he Future

Conclusions

- Entangled Quantum Internet will be buildable (eventually)
- Digital applications include quantum key distribution, leader election, simple connection of distributed resources
- Gyroscopic uses include possible "Big Science" projects like gravity wave observatories
- ...and there are lots of fun networking
 24 problems before we get there

AQUA: Advancing Quantum Architecture

