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Assume a Quantum Computer  
Like This... 



I want to Build a Distributed 
Quantum System Like This 

Laboratory-sized quantum multicomputer or 
transcontinental network, either one! 



Repeater Protocol Stack 
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Only quantum! 
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Outline 

• Two types of quantum networks 
• IPsec with QKD 

• IPsec with QKD 
• US & European efforts 
• Open problems & plans 

• Repeaters 
• Basic concepts 
• Our recent results 
• Open problems & plans 
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Two Types of Quantum Networks 

Unentangled 
Networks 

Entangled 
Networks 
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Quantum Key Distribution (QKD) 

• Creates a shared, random secret  
between two nodes 

• Uses physical effects to guarantee that key  
has not been observed 

• Requires authenticated classical channel 
• Limited to <150km per hop 



IPsec with QKD (ORF2008) 



The DARPA Quantum Network 

slide from Elliott, BBN 



SECOQC Prototype - principle layout 

FOR
81 m
LMU

Slide from 
M. Peev, 2008 



A Trusted repeater QKD-Network: Abstract 
Architecture (SECOQC, Europe) 
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M. Peev, 2008 
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QKD with IPsec Plans 

• Test over raw fiber, Yagami<->K2 
• Use key for one-time pad 
• Work w/ NEC, BBN & ITU to standardize 
• Write experimental I-D on IKE changes 
• Take to IETF in Hiroshima? 
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Outline 

• Two types of quantum networks 
• IPsec with QKD 

• IPsec with QKD 
• US & European efforts 
• Open problems & plans 

• Repeaters 
• Basic concepts 
• Our recent results 
• Open problems & plans 

A B 

C 

E 

G 

H 



14 

Network Link Technology (Qubus) 

coherent 
optical source 
(laser) 

waveguide 

homodyne 
detector 

transceiver 
qubit in 
node 1 

transceiver 
qubit in 
node 2 

millimeters to kilometers 

Munro, Nemoto, Spiller, New J. Phys. 7, 137 (2005) 
Ladd et al., NJP 8, 184 (2006) 
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Quantum Repeater Operation: 
Entanglement Swapping 

Station 0 Station 1 Station 2 

Bell State 
Measurement 

Fidelity decreases; you must purify afterwards 

Results must be communicated 
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Nested Entanglement Swapping 
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Purification 

Station 0 Station 2 

Results must be communicated  
(two-way?) 
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Repeater Protocol Stack 
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Four-Hop Protocol Interactions 

Van Meter et al., IEEE/ACM Trans. on Networking, 
Aug. 2009 (to appear)  
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The Repeater’s Jobs 

Entanglement swapping & purification, which 
require: 

• A little bit of quantum communication 
• Quantum memory 
• Local quantum operations  

(gates & measurements) 
• Lots of decision making 

(both local and distributed) 
• Lots of classical communication 
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Entanglement Pumping 

Ineffective w/ large fidelity difference 

0.638 

0.638 
0.72 

0.638 
0.75 

0.638 
0.77 

0.638 
0.79 
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Symmetric Purification 

Problems: 
Exact matching can  
require long waits. 
Not realistic when 
memory effects 
(decoherence) 
considered. 
Can deadlock if 
resources are limited.  

0.638 

0.638 
0.72 

0.638 

0.638 
0.797 

X 
0.72 
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Greedy Purification 

Doesn’t wait for 
anything, uses 
whatever’s available. 

Works well w/ large 
number of qubits 
per repeater. 

0.638 

0.638 
0.72 

0.638 

0.638 
0.757 

X 
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Banded Purification 

Large gains in throughput. 
Moderate # qubits (5-50). 
Avoids deadlock. 
Realistic memory model. 
Simple to implement in 
real time (even in HW). 
Probably not optimal, 
but probably close. 

0.638 

0.638 
0.72 

0.638 

0.638 
0.797 

X 0.72 

Divide fidelity space 
into multiple bands 
e.g., above & below 0.70 
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Banded Purification Performance 

Van Meter et al., IEEE/ACM Trans. on Networking, 
Aug. 2009 (to appear), quant-ph:0705.4128  
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Banded Purification Latency 

Van Meter et al., IEEE/ACM Trans. on Networking, 
Aug. 2009 (to appear), quant-ph:0705.4128  
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Protocol Design 
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Routing 

Simple: use Dijkstra’s Shortest Path First. 
...but we don’t yet know the cost metric. 
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A Different Meaning of  
“Which Path?” 

A B 

C 

D E 
F 

G 

H 

3 hops: ACGB 
4 hops: ACGHB 
             ACEHB 
             ADEHB 
             ADFHB 
5 hops: ACEHGB 
             ADEHGB 
             ADECGB 
             ADFHGB 
6 hops: ACECGHB 
7 hops: ADFHECGB 
             ACEDCHGB 
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But What is Distance? 

A B 

C 

D E 
F 

G 

H 

What if hops are not homogeneous? 

Are 2n-1 hops, 
       2n    hops, 
and 2n+1 hops 
significantly different? 
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How Do We Order These? 

• How does number of 
links matter? 

• Does number of weak 
links matter? 

• Does position of weak 
link matter? 

•  Is cost additive? 
•  At this logical level, 

is this technology-
independent? 
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Other Problems 

• Defining swap points 
•  Static or dynamic? 
•  Avoiding leapfrog 
•  Avoiding deadlock 
• Minimizing waits for 

classical messages 
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Other Problems 

Partial messaging 
sequence 

Can this be made 
more efficient? 

Due to memory 
degradation, gains 
will be better than 
linear 
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Leapfrog 

Station 0 

                

        

Station 1 Station 2 Station 3 



35 

Resource Management (QoS?) 

A B 

C 

D 

A<->B & C<->D 
want to talk. 

Remember, it’s a  
distributed computation. 

Worse, fragile quantum memory means there 
is a hard real time component. 
==>requires circuit switching??? 
(bottleneck likely is memory per node) 
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Open Repeater Problems 

• Well, repeater HW doesn’t work yet... 
‒ Sims of “weak links” mostly functional 
‒ Establishing swapping points 
‒ More dynamic behavior 
‒ Non-power-of-two hops 
‒ Finish & publish protocol state machine 
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Open Complex Network Problems 

• Coding partially done 
‒ Using graphviz file format 
‒ Routing not done 
‒ Workload generator needs work 
‒ QoS / resource allocation not implemented 

• Visualization of networks 
•  Investigate graph states & quantum network coding 
• More detailed workload definition 
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Milestones for JSPS 

• Define a cost metric 
(figure out if it’s additive!) 

• Define a path selection algorithm 
• Define test cases 
• Simulate that set of test cases 
• Extend to topologically complex networks 
• Create static visualizations 
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Food for Thought 

• When will first Science or Nature paper 
appear using a quantum computer, but not 
about the quantum computer? 

• That is, when will a quantum computer do 
science, rather than be science? 

• Answers from quantum researchers range 
from “less than five years” to “more than forty 
years” 



Copyright © 2006 Keio University 　｜　　
40 

Thanks 

Thanks to Thaddeus Ladd, Bill Munro and Kae 
Nemoto (coauthors on much of this work), as 
well as Austin Fowler, Jim Harrington, Kohei 
Itoh, Agung Trisetyarso, Byung-Soo Choi, 
Shota Nagayama, and Takahiko Satoh 

And funding from NICT, MEXT, NSF, the Mori 
Fund at Keio, and now JSPS for funding. 



AQUA: Advancing Quantum 
Architecture 


