a9 United States

Kurabayashi et al.

US 20110161974A1

a2y Patent Application Publication o) Pub. No.: US 2011/0161974 A1

43) Pub. Date: Jun. 30, 2011

(54) METHODS AND APPARATUS FOR

PARALLELIZING HETEROGENEOUS
NETWORK COMMUNICATION IN SMART

DEVICES

(75) Inventors: Shuichi Kurabayashi, Fujisawa
(IP); Naofumi Yoshida, Yokohama
(IP); Kosuke Takano, Fujisawa
(IP)

(73) Assignee: EMPIRE TECHNOLOGY
DEVELOPMENT LLC,
Wilmington, DE (US)

(21) Appl. No.: 12/647,711

205
submitted tasks

(22) Filed: Dec. 28,2009

Publication Classification

(51) Int.CL
GOGF 9/50 (2006.01)

(CZ R VR & R 718/104

(57) ABSTRACT

The present disclosure relates to devices, implementations
and techniques for task scheduling. Specifically, task sched-
uling in an electronic device that has a multi-processing envi-
ronment and support network interface devices.

Y
210

task analyzer unit

200 - task scheduling device

| 230 _
task allocator unit
220 240
resource checker unit scheduler unit
260
112, 112, 12,
core core core
270
250, 250, 250,
network network network
interface/ interface/ interface/
pratocols protocols protocols

Patent Application Publication Jun. 30,2011 Sheet 1 of 6 US 2011/0161974 A1

100 — smart phone
device

110 — multi-core
processor

1124
core

112,

core

120 14 | - 18 | 130

smart — - —
ohone e 112, - personal

. computer
device core P

|

|

116 |
|

|

I

v
140

internet

150
web
server

FIG. 1

Patent Application Publication

205
submitted tasks

Jun. 30, 2011 Sheet 2 of 6

US 2011/0161974 Al

Y
210

task analyzer unit

230

task allocator unit

200 — task scheduling device

220 240
resource checker unit scheduler unit
260
112, 112, 112,
core core core
270
250, 250, 250,
network network network
interface/ interface/ interface/
protocols protocols protocols

FIG. 2

US 2011/0161974 Al

Jun. 30, 2011 Sheet 3 of 6

Patent Application Publication

¥sey-qns — gzZ¢e

¥se}-gns — $Z¢

jysey-qns - Z2¢

%SE} Puovses — OZE

¥Serans — QL ¢

Yserans - gL ¢

- vseyans — ¢

¥seyans —zZLe

MSE} IS —-(QLE

Jazhjeue yse1 - QL ¢

€ Old
abeio)s
005 9100
"zl P
7Ge . %
L1
bl we L4 gee A~
o.mw / 2109 l\\\ B
) 4% Gee
d/u « €t 8100 l\“\\.\\\
f0S2 2L |+ Gye bee
e — 11
dsiu 2100 | -« |
o V\ e [T eve T eee
dnu (&7 0100 |et__ CVE \F\\\
‘oSz LGe g41" A,Nilk\ |
3% l/‘\\\ur\mml‘.. |
08¢ q % jun
0.€ 10)e00||8
Nun Jo3ORYD Jlun Ja|npayos yse} Jun
90IN0sal — 07T ove 0€Z !
_ 06€ 3

Patent Application Publication Jun. 30, 2011 Sheet 4 of 6 US 2011/0161974 A1

400
402 /
Start
404

Receive Tasks

l

406
Check Status of Cores & Network Interface

l

408
Check Aftribution of Tasks

l

410
Select Allocation Strategy

l

412

Allocation Tasks to Cores

l

414
Execute Tasks on Allocated Cores

l

416
End

FIG. 4

Patent Application Publication Jun. 30, 2011 Sheet 5 of 6 US 2011/0161974 A1

500 — A computer program product

502 — A signal bearing medium

504 — Machine-readable instructions,
which if executed by one or more
processors, operatively enable a
computing device to:

select an allocation strategy for a task,
based on an attribution of the task; and

allocate the task to one or more
processor cores, based at least in part on
the selected allocation strategy.

- - — = —
506 — A computer readable medium
.
r -_— — — —/ —/ /7 T
508 — A recordable medium
. -
r— - — e
510 — A communication medium

FIG. 5

US 2011/0161974 Al

Jun. 30, 2011 Sheet 6 of 6

Patent Application Publication

{089)
(s)aoinaq
Bunndwog
18410

— A {179) shg SoEloiu| 9beIoNS :-l......”v
| 1 L iz
{ov9) (aaH “6-9) (aagiad “69)
_ N Jgjjonuo) {zg9) abeioys (159) obeio)g
> aoepoyuySNg 2|qBAOLUSY-UON ajgeaowoy
_ (z89) (189)
V (s)hod AHVB:EEOQ N 0G9) SOJIAIP obEIoIS
Wwwoy yiomaN | K= o -
_ — £ {0£9) shg AJOWON 3 ||_
L9 et _GEV Jsq103ucs Aloway _ (gz9) e1RQ
_ 19104100 - _ 7T uonNqQUNY YseL
= RSP 2
(€29) jo)(ereg 5 _ [19) simsibon | VZ9) E1eq Weiboid
(s)uod (29 L8
o on LL9 A © €19
= 2 | dsaind-/in1v
R e 2 2400 108593014 (ez9) wyHoB|y
jeueg : Buinpsyog j}se}
_ 029 T [eaydii = _ : (z19) (i19)
. ayoen ayae)d
_ _ : ziono | | LlensT
(z99) nun ! asa/on/an
_ AHv Buissesold _ - G790
os
{€99) v - (019) 1oss000.d wayshg Bugesado
7pL9) J0SS901 !
AJHV Am\ﬁwm (ool un | M _ [Toia)soss d__i IWV/IWOX
(| Buissasold (“019) Josssooid ﬁ (0797 AIoWws i WoTsAS
_ sojydels) _ ;

099 HIAUL INdIng

US 2011/0161974 Al

METHODS AND APPARATUS FOR
PARALLELIZING HETEROGENEOUS
NETWORK COMMUNICATION IN SMART
DEVICES

BACKGROUND

[0001] Unless otherwise indicated herein, the approaches
described in this section are not prior art to the claims in this
application and are not admitted to be prior art by inclusion in
this section.

[0002] Parallel computing is a typical solution to improve
efficiency of multiple computing processes. The easiest type
of parallel computing is the bag-of-tasks parallelization that
allows computing nodes to share a list of target processes and
to pick them one by one from the list, until the list is
exhausted. However, such simple parallelization can’t exploit
the full capacity of core architecture of modern central pro-
cessing units (hereinafter “CPU”) and heterogeneous net-
work interface devices. As the utilization of multi-core CPU
chips, multi-core GPU (Graphical Processing Unit) chips,
multi-core CPU architecture embedded devices, and the like,
are continually increased, the need for techniques to effec-
tively utilizing these chips increases.

[0003] Modern smart devices, such as smart phones, sup-
port multiple and heterogeneous network interface devices
supporting protocols such as 3G, LTE, GSM, Bluetooth, Zig-
Bee, UWB, IrDA, and Wireless-USB, as will be understood
to those skilled in the art.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] The subject matter of the present disclosure is par-
ticularly pointed out and distinctly claimed in the concluding
portion of the specification. The foregoing and other features
of the present disclosure will become more fully apparent
from the following description and appended claims, taken in
conjunction with the accompanying drawings. Understand-
ing that these drawings depict only several embodiments in
accordance with the disclosure and are, therefore, not to be
considered limiting of its scope, the disclosure will be
described with additional specificity and detail through use of
the accompanying drawings.

[0005] In the drawings:

[0006] FIG.1 illustrates a smart phone device parallelizing
heterogeneous network communication, according to one
embodiment of the present disclosure;

[0007] FIG. 2 illustrates a task scheduling device, accord-
ing to one embodiment of the present disclosure;

[0008] FIG. 3 illustrates a process flow, according to one
embodiment of the present disclosure;

[0009] FIG. 4 illustrates an example computer program
product that is arranged in accordance with the present dis-
closure;

[0010] FIG. 5 illustrates an exemplary computing device,
according to one embodiment of the present disclosure; and
[0011] FIG. 6 illustrates an exemplary computing device,
according to one embodiment of the present disclosure.

DETAILED DESCRIPTION

[0012] The following description sets forth various
examples along with specific details to provide a thorough
understanding of claimed subject matter. It will be understood
by those skilled in the art, however, that claimed subject
matter may be practiced without some or more of the specific
details disclosed herein. Further, in some circumstances,
well-known methods, procedures, systems, components and/

Jun. 30, 2011

or circuits have not been described in detail in order to avoid
unnecessarily obscuring claimed subject matter. In the fol-
lowing detailed description, reference is made to the accom-
panying drawings, which form a part hereof. In the drawings,
similar symbols typically identify similar components, unless
context dictates otherwise. The illustrative embodiments
described in the detailed description, drawings, and claims
are not meant to be limiting. Other embodiments may be
utilized, and other changes may be made, without departing
from the spirit or scope of the subject matter presented here.
It will be readily understood that the aspects of the present
disclosure, as generally described herein, and illustrated in
the Figures, can be arranged, substituted, combined, and
designed in a wide variety of different configurations, all of
which are explicitly contemplated and make part of this dis-
closure.

[0013] It is understood that the term “multiple processor
cores” may include, but is not limited to: i) a single processor
including multiple cores (e.g. multi-core processor), and ii)
multiple processors, each of which includes a single core
and/or multiple cores.

[0014] This disclosure is drawn, inter alia, to methods,
apparatus, systems and/or computer program products
related to task scheduling. Specifically, this disclosure is
drawn to task scheduling in an electronic device that has a
multi-processing environment and support for multiple net-
work interface devices.

[0015] Many smart phone devices, mobile data devices,
and the like, support multiple and heterogeneous network
interface devices supporting protocols such as 3G (37 Gen-
eration mobile telecommunications standard), LTE (Long
Term Evolution), GSM (Global System for Mobile commu-
nications), Bluetooth (open wireless protocol for exchanging
data over short distance), ZigBee (high level communication
protocols using small, low-power digital radios), UWB (Ul-
tra-Wideband radio technology that can be used at very low
energy levels for short-range high-bandwidth communica-
tions), IrDA (Infrared Data Association—communication
protocol standards for short-range exchange of data over
infrared light), and Wireless-USB (Universal Serial Bus
(wired communication)), and the like. Also, some smart
phone devices and the like have a multi-processing environ-
ment such as multiple processors or multi-cores.

[0016] It is understood that, although the detailed descrip-
tion may use the term “smart phone” as an exemplary elec-
tronic device to which the subject matter applies, the subject
matter of the present disclosure many apply to any electronic
device having multiple processor cores and supporting mul-
tiple and heterogeneous network interface devices.

[0017] An embodiment of the subject matter described
herein provides a task scheduling device, method, and article
which may be used for a smart phone device and the like
which has multi-processing environment and supports mul-
tiple network interface devices. Such task scheduling device,
method, and article can realize parallelized network commu-
nication in a smart phone device or the like by adaptively
configuring the task scheduling parameters for multiple pro-
cessor cores. More specifically, the subject task scheduling
device, method, and article can perform network communi-
cation using heterogeneous network interface devices simul-
taneously by configuring the task scheduling parameters
adaptively according to each network interface device’s own
physical and logical attribution or characteristics. An embodi-
ment for present disclosure may include controlling task
scheduling weighting for exploiting multi-core processors by
morphing the parameters adaptively.

US 2011/0161974 Al

[0018] FIG. 1 shows a schematic of a smart phone device
parallelizing heterogeneous network communications in
accordance with at least some embodiments of the present
disclosure. A smart phone device 100 may have a multi-core
processor 110. In one example, the multi-core processor 110
includes multiple cores, labeled as 112, 112,, . . . 112,
where n is the total number of cores. The smart phone device
100 may have several network interface devices, such as 3G,
LTE, WiMAX, GSM, Bluetooth, ZigBee, UWB, IrDA, Wire-
less-USB, and the like, as well as a TCP/IP protocol stack.
The smart phone device 100 may be in voice communication
(shown as element 114) with another smart phone device 120
by using 3G, LTE, WiMAX or the like. The smart phone
device 100 may also be in personal area network (PAN)
communication 118 with a personal computer 130 by using
Bluetooth, UWB, ZigBee or the like. Additionally, the smart
phone device 100 may be in TCP/IP communication 116 with
a web server 150 via the Internet 140. Furthermore, several
application programs such as a music player, a web browser
and the like may be run on the smart phone device 100.
[0019] In accordance with at least some embodiments of
the present disclosure, a task scheduling device may be opera-
tively coupled to a device having multiple processor cores and
supporting multiple network interface devices comprises a
task analyzer unit configured to select an allocation strategy
for a task, based on an attribution of the task; and a task
allocator unit may be configured to allocate the task to one or
more processor cores, based at least in part on the selected
allocation strategy. The task analyzer unit may be configured
to select the allocation strategy for the task, based at least in
part on the attribution of the task with regard to a network
interface device.

[0020] FIG. 2 shows a schematic of a task scheduling
device 200 which may be used in a smart phone device 100 of
FIG. 1. The task scheduling device 200 may include a task
analyzer unit 210, atask allocator unit 230, a resource checker
unit 220, and a scheduler unit 240.

[0021] The task analyzer unit 210 may be configured to
receive one or more submitted tasks (shown as element 205).
The task analyzer unit 210 may then analyze network inter-
faces and protocols 250, . . . 250,, which will be used by the
submitted tasks. Furthermore, the task analyzer unit 210 may
create a list of sub-tasks for each task.

[0022] The task analyzer unit 210 may be configured to
retrieve attributions of a task, such as network interfaces and
protocols to be used, latency, data size to communicate, CPU
usage, level of parallelism and the like, from a program file
which is operatively associated with the task. The program
file may be configured to include annotations, which indicate
the network interfaces and protocols to be used by the task.
[0023] An example of such annotations in accordance with
at least some embodiments of the present disclosure is as
follows:

@NetworkInterface (“3G”)

@CommunicationProtocol(“HTTP”)

public class CommunicationTaskClass {
doSomeThing () {

,

[0024] The annotations may be implemented by using pro-
gramming languages’ metadata system, such as Java Anno-
tation (see JSR-269 http://jcp.org/en/jsr/detail ?id=269) and
the like. The above example annotation is exemplary for a

Jun. 30, 2011

communication task in Java. This example shows two anno-
tations—i.e. “@Networklnterface” and “@Communication-
Protocol”. “@Networklnterface” is an annotation for speci-
fying physical network interface.
“@CommunicationProtocol” is an annotation for specifying
application-level communication protocol such as HTTP
(HyperText Transfer Protocol), SMTP (Simple Mail Transfer
Protocol), IMAP (Internet Message Access Protocol) over
TCP/IP, A2DP (Advanced Audio Distribution Profile) over
Bluetooth and the like.

[0025] The task analyzer unit 210 may be configured to
select an allocation strategy for the task, based on an attribu-
tion of the task. The allocation strategy indicates how to
allocate a task to processor cores. For example, the allocation
strategy may include i) One-to-One, ii) One-to-Many, iii)
Many-to-One, and iv) Many-to-Many.

[0026] The strategy “One-to-One” is to allocate a single
task to the single processor core. The single task will occupy
the allocated core. This strategy may be effective, for
example, to perform a task that has low-level parallelism.
[0027] The strategy “One-to-Many” is to allocate a single
task to multiple processor cores to execute it simultaneously.
This strategy may be eftective, for example, to perform a task
that has high-level parallelism. An example of this strategy,
may include, but is not limited to rendering a web page, which
may include an HTML (“Hyper Text Markup Language”—
i.e., the core program) file, a JPG (“Joint Photographic
experts Group”—i.e., photos and graphics) file, a MIDI
(“Musical Instrument Digital Interface”—i.e., music) file,
and the like.

[0028] The strategy “Many-to-One” is to allocate multiple
tasks to a single processor core. This strategy may be a con-
ventional CPU scheduling strategy of multi-tasking OS (“Op-
erating System”) such as Microsoft Windows, Linux, and the
like. This strategy may be, for example, effective to perform
multiple tasks that involve network communication with
large latency.

[0029] The strategy “Many-to-Many” is to allocate mul-
tiple tasks to multiple processor cores to execute them simul-
taneously. This strategy should be effective to perform mul-
tiple tasks that have high-level parallelism and involve
network communications with large latency.

[0030] The task analyzer unit 210 may be configured to
select an allocation strategy among the strategies above for
the task, based on an attribution of the task.

[0031] An example of an attribution of a task is a network
interface device for the use of the task. The network commu-
nication may be classified into four types of categories, as
follows.

[0032] Voice communication—This category of communi-
cation uses a common cellular phone protocol, such as GSM,
3G, LTE, and the like. This category may include VoIP com-
munication using TCP/IP. This category of communication
may need real-time and low-latency data link between nodes
in order to provide real-time voice communication. Thus, the
allocation strategy “One-to-One” may be appropriate for this
category of communication.

[0033] Personal area communication—This category of
communication is dedicated for local area and “device-to-
device” communication, such as Bluetooth, UWB, and the
like. This category may need high-level parallelism because a
smart phone needs to receive a phone call even if the smart
phone is performing a personal area communication. Thus,
the allocation strategy “Many-to-Many” may be appropriate
for this category of communication.

US 2011/0161974 Al

[0034] TCP/IP Communication—This category of com-
munication may include common web browsing and e-mail-
ing tasks. As web browsers and e-mail clients may have a
significant number of independent tasks, these applications
may have high-level parallelism. For example, rendering
HTML documents generally involves multiple HTTP “GET”
command executions for retrieving image files. These HTTP
“GET” commands can be performed in parallel because those
commands are independent of each other. Thus, the allocation
strategy “One-to-Many” may be appropriate for this category
of communication.

[0035] Application programs—This category is for
installed applications on a smart phone device. The smart
phone device may have network-enabled applications, such
as a music player, VoIP clients, a FTP client, and the like. As
applications use various protocols, it is difficult to estimate
the network latency and the communication data size stati-
cally. Thus, the allocation strategy may be determined, based
on other attributions of the task, such as CPU usage, parallel-
ism of those applications, the like or combinations thereof.
[0036] Table 1 shows an example of storing attributions of
the task and the associated allocation strategy in accordance
with atleast some embodiments of the present disclosure. The
task analyzer unit 210 may be configured to select an alloca-
tion strategy for a task, based on one of or any combination of
the attributions of the task regarding latency, data size, CPU
usage, and parallelism, by referring to such a table.

TABLE 1
Latency Data Size CPU Usage Parallelism Allocation Strategy
Low Small Low Low One-to-One
Low Small Low High Many-to-Many
High Large Low High Many-to-Many
High Large High High One-to-Many
High Small Low High Many-to-Many
N/A N/A High High One-to-Many
N/A N/A Low High Many-to-Many
N/A N/A Low Low Many-to-One
N/A N/A High Low One-to-One
[0037] Referring back to FIG. 2, the resource checker unit

220 may be configured to monitor usage of each CPU (shown
as elements 112,, 112,, . . . 112,)) through a communication
device 260 (e.g. a bus) and available bandwidth of each net-
work interface (shown as elements 250, 250,, . . . 250,)
through a communication device 270 (e.g. a bus). The result
of availability/capacity monitoring is reported to a task allo-
cator unit 230, which is explained in detail below.

[0038] The task allocator unit 230 may be configured to
allocate one or more tasks to one or more processor cores,
based at least in part on the allocation strategy selected by the
task analyzer unit 210. The task allocator unit 230 also may be
configured to prepare threads and/or processes for executing
tasks based on the allocation strategy. The task allocator unit
230 may prepare the threads for executing a single task by
using multi-core processors. The task allocator unit 230 may
also prepare the processes for executing multiple independent
tasks by using multi-core processors.

[0039] Furthermore, the task allocator unit 230 may be
configured to receive the information regarding usage of each
CPU and available bandwidth of each network interface from
the resource checker unit 220. Then, the task allocator unit

Jun. 30, 2011

230 may be configured to re-allocate the tasks to threads/
processes based on the availability/capacity of network inter-
face devices and CPU cores.

[0040] The scheduler unit 240 may be configured to control
execution of multiple threads or processes. The scheduler unit
240 may assign sub-tasks to each core (shown as 112, 112,
... 112) and may be in communication with each network
interface (shown as elements 250,, 250, . . . 250,,) through a
communication device 270 (e.g. a bus)

[0041] Thus, the present disclosure may achieve parallel-
ized network communication in smart devices by adaptively
configuring the task scheduling parameters for multi-core
processors. The present disclosure may achieve network
communication using heterogeneous network interface
devices simultaneously by configuring the task scheduling
parameters adaptively according to each network interface
device’s own physical and logical characteristics. The present
disclosure may be used with smart devices having multiple
CPU or multi-core CPU and having support for network
communication protocols such as TCP/IP (Transmission
Control Protocol/Internet Protocol) over 3G, voice over 3G,
LTE, GSM, Bluetooth, ZigBee, UWB, IrDA, and Wireless-
USB, and the like, wherein the present disclosure assigns
processor cores to the communication tasks that use a specific
network interface.

[0042] FIG. 3 shows an example of a task allocation and
execution in the task scheduling device 200 which may be
used in a smart phone device 100 in accordance with at least
some embodiments of the present disclosure.

[0043] In this example, the task analyzer 210 accepts two
tasks. The first task 310 may be a web browser that renders
http://www.uspto.gov/index.htm, and the second task 320
may be an address book application that exchanges address
information with other devices by using an IrDA protocol.
When the task scheduling device 200 accepts these two tasks,
the task analyzer unit 210 retrieves the annotations defined in
the corresponding program files, as will be understood to
those skilled in the art. The task analyzer unit 210 may create
alist of sub-tasks 312, 314, 316, and 318 for first task 310. For
example, first sub-task 312 may be a “GET index.htm”
instruction, second sub-task 314 may be a “GET head.png”
instruction, third sub-task 316 may be a “GET foot.png”
instruction, and forth sub-task 318 may be a “GET main.png”
instruction. The task analyzer unit 210 may also create a list of
sub-tasks 322, 324, and 326 for second task 320. For example,
first sub-task 322 may be a “Send an address” instruction,
second sub-task 324 may be a “Receive an address™ instruc-
tion, and third sub-task 326 may be a “Store the address”
instruction.

[0044] The task analyzer unit 210 may also retrieve four
annotations (Latency, Data Size, CPU Usage, Parallelism)
from the corresponding program files. The task analyzer unit
210 selects the appropriate task allocation strategy (“One-to-
One”, “One-to-Many”, “Many-to-One”, “Many-to-Many™)
according to the parameters (Latency, Data Size, CPU Usage,
Parallelism) by reflecting the parameter table shown in Table
1.The sub-tasks 312,314, 316,318, 322,324, and 326 may be
transferred to the task allocator unit 230 (shown as lines 331,
332,333, 334, 335, 336, and 337) and the task allocator unit
230 may assign CPU cores (i.e. elements 112, ... 112) for
each sub-task according to the task allocation strategy that is
selected for each task (shown as lines 341, 342, 343, 344, 345,
346, and 347). The scheduler unit 240 may execute sub-tasks
assigned to each CPU core and transfer the executed tasks to

US 2011/0161974 Al

the appropriate network interface 250,, . . . 250,, (labeled
“ni/p”) or to storage 360, as shown with lines 351, 352, 353,
and 354. The resource checker unit 220 monitors the status of
CPU usage (shown as line 370) and the available bandwidth
of network interfaces continuously (shown as line 380). The
resource checker unit 220 notifies the task allocator unit 230
about the availability and capacity of CPUs and network
interfaces (shown as line 390). The task allocator unit 230
may change the task allocation strategy adaptively according
to the notified state of CPUs and network interfaces.

[0045] FIG. 4 shows an example of a process flow for task
scheduling, in accordance with at least some embodiments of
the present disclosure. A process 400, and other processes
described herein, set forth various functional blocks or
actions that may be described as processing steps, functional
operations, events and/or acts, etc., which may be performed
by hardware, software, and/or firmware. Those skilled in the
art, in light of the present disclosure, will recognize that
numerous alternatives to the functional blocks shown in FIG.
4 may be practiced in various implementations. For example,
although the process 400, as shown in FIG. 4, comprises one
particular order of blocks or actions, the order in which these
blocks or actions are presented does not necessarily limit
claimed subject matter to any particular order. Likewise,
intervening actions not shown in FIG. 4 and/or additional
actions not shown in FIG. 4 may be employed and/or some of
the actions shown in FIG. 4 may be eliminated, without
departing from the scope of claimed subject matter. Thus, the
process 400 may include one or more of operation blocks 404,
406, 408, 410, 412, and/or 414.

[0046] As illustrated in FIG. 4, the process 400 may be
implemented for task scheduling for a smart phone device
100 having multiple processor cores 112, and supporting
multiple network interface devices 250. The process 400 may
begin at start block 402 and proceeds to block 404 where the
task analyzer unit 210 may receive several submitted network
communication tasks. At block 406, the resource checker unit
220 may check the number of available processor cores and
available processing capacity of those processor cores. The
resource checker 220 may also check the availability of the
network interface devices. For example, the resource checker
220 may check 3G signal and connections to wireless per-
sonal area network (WPAN) which is created with local area
wireless network technologies, such as IrDA, Bluetooth,
UWB, Z-Wave, ZigBee and the like.

[0047] At block 408, the task analyzer unit 210 may ana-
lyze the attributions of each task, such as network interfaces
and protocols to be used. The task analyzer unit 210 may be
configured to retrieve annotations, which explain the attribu-
tions of the task. Such annotations may be stored in a program
file operatively associated with the task. Then, at block 410,
the task analyzer unit 210 may determine an allocation strat-
egy for the task, by referencing a parameter table, such as
shown in Table 1.

[0048] At block 412, the task allocator unit 230 may allo-
cate each task to the corresponding core, based on the allo-
cation strategy determined by the task analyzer unit 210. At
block 414, the task allocator unit 230 may assign the task
scheduling parameters, and the scheduler unit 240 may con-
trol execution ofthe tasks on each processor core. The process
may then end at block 416.

[0049] FIG. 5 illustrates an example computer program
product 500 that is arranged in accordance with the present
disclosure. Program product 500 may include a signal bearing

Jun. 30, 2011

medium 502. Signal bearing medium 502 may include one or
more machine-readable instructions 504, which, if executed
by one or more processors, may operatively enable a comput-
ing device to provide the functionality described above with
respect to FIG. 4; in specific, select an allocation strategy for
atask, based on an attribution of the task, and allocate the task
to one or more processor cores, based at least in part on the
selection allocation strategy. Thus, for example, referring to
FIG. 2, a task scheduling device 200 may undertake one or
more of the actions shown in FIG. 4 in response to instruc-
tions 504 conveyed by medium 502.

[0050] In some implementations, signal bearing medium
502 may encompass a computer-readable medium 506, such
as, but not limited to, a hard disk drive, a Compact Disc (CD),
a Digital Versatile Disk (DVD), a digital tape, memory, etc. In
some implementations, signal bearing medium 502 may
encompass a recordable medium 508, such as, but not limited
to, memory, read/write (R/W) CDs, R/'W DVDs, etc. In some
implementations, signal bearing medium 502 may encom-
pass a communications medium 510, such as, but not limited
to, a digital and/or an analog communication medium (e.g., a
fiber optic cable, a waveguide, a wired communications link,
a wireless communication link, etc.).

[0051] FIG. 6 is a block diagram illustrating an exemplary
computing device 600 that is arranged in accordance with the
present disclosure. In one example configuration 601, com-
puting device 600 may include one or more processors
(shown as multiple processors 610,, 610,, . . . 610,) and
system memory 620. A memory bus 630 can be used for

communicating between the processors 610,, 610, . .. 610,
and the system memory 620.
[0052] Depending on the desired configuration, processors

610, 610,, . . . 610, may be of any type including but not
limited to a microprocessor (LP), a microcontroller (uC), a
digital signal processor (DSP), or any combination thereof.
Processors 610, 610, ... 610, can include one or more levels
of'caching, such as alevel one (L.1) cache 611 and a level two
(L2) cache 612, a processor core 613, and registers 614. The
processor core 613 can include an arithmetic logic unit
(ALU), a floating point unit (FPU), a digital signal processing
core (DSP Core), or any combination thereof. A memory
controller 615 can also be used with the processors 610,
610,, . . . 610,, or in some implementations the memory
controller 615 can be an internal part of the processors 610,
610,, ...610,.

[0053] Depending on the desired configuration, the system
memory 620 may be of any type including but not limited to
volatile memory (such as RAM), non-volatile memory (such
as ROM, flash memory, etc.) or any combination thereof.
System memory 620 may include an operating system 621,
one or more applications 622, and program data 624. Appli-
cation 622 may include task scheduling algorithm 623 in a
task scheduling device 200 (FIG. 2) that is arranged to per-
form the functions and/or operations as described herein
including the functional blocks and/or operations described
with respect to process 400 of FIG. 4. Program data 624 may
include task attribution data 625 for use in the task scheduling
algorithm 623. In some example embodiments, application
622 may be arranged to operate with program data 624 on an
operating system 621 such that implementations of mobile
sampling may be provided as described herein. This
described basic configuration is illustrated in FIG. 6 by those
components within dashed line 601.

US 2011/0161974 Al

[0054] Computing device 600 may have additional features
or functionality, and additional interfaces to facilitate com-
munications between the basic configuration 601 and any
required devices and interfaces. For example, a bus/interface
controller 640 may be used to facilitate communications
between the basic configuration 601 and one or more data
storage devices 650 via a storage interface bus 641. The data
storage devices 650 may be removable storage devices 651,
non-removable storage devices 652, or a combination
thereof. Examples of removable storage and non-removable
storage devices include magnetic disk devices such as flexible
disk drives and hard-disk drives (HDD), optical disk drives
such as compact disk (CD) drives or digital versatile disk
(DVD) drives, solid state drives (SSD), and tape drives to
name a few. Example computer storage media may include
volatile and nonvolatile, removable and non-removable
media implemented in any method or technology for storage
of information, such as computer readable instructions, data
structures, program modules, or other data.

[0055] System memory 620, removable storage 651 and
non-removable storage 652 are all examples of computer
storage media. Computer storage media includes, but is not
limited to, RAM, ROM, EEPROM, flash memory or other
memory technology, CD-ROM, digital versatile disks (DVD)
or other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which may be used to store the desired
information and which may be accessed by computing device
600. Any such computer storage media may be part of device
600.

[0056] Computing device 600 may also include an inter-
face bus 642 for facilitating communication from various
interface devices (e.g., output interfaces, peripheral inter-
faces, and communication interfaces) to the basic configura-
tion 601 via the bus/interface controller 640. Example output
interfaces 660 may include a graphics processing unit 661 and
an audio processing unit 662, which may be configured to
communicate to various external devices such as a display or
speakers via one or more NV ports 663. Example peripheral
interfaces 660 may include a serial interface controller 671
and/or a parallel interface controller 672, which may be con-
figured to communicate with external devices such as input
devices (e.g., keyboard, mouse, pen, voice input device, touch
input device, etc.) or other peripheral devices (e.g., printer,
scanner, etc.) via one or more [/O ports 673. An example
communication interface 680 includes a network controller
681, which may be arranged to facilitate communications
with one or more other computing devices 690 over a network
communication via one or more communication ports 682. A
communication connection is one example of a communica-
tion media. Communication media may typically be embod-
ied by computer readable instructions, data structures, pro-
gram modules, or other data in a modulated data signal, such
as a carrier wave or other transport mechanism, and may
include any information delivery media. A “modulated data
signal” may be a signal that has one or more of its character-
istics set or changed in such a manner as to encode informa-
tion in the signal. By way of example, and not limitation,
communication media may include wired media such as a
wired network or direct-wired connection, and wireless
media such as acoustic, radio frequency (RF), infrared (IR)
and other wireless media. The term computer readable media
as used herein may include both storage media and commu-
nication media.

[0057] Computing device 600 may be implemented as a
portion of a small-form factor portable (or mobile) electronic
device such as a cell phone, a personal data assistant (PDA),

Jun. 30, 2011

apersonal media player device, a wireless web-watch device,
apersonal headset device, an application specific device, or a
hybrid device that includes any of the above functions. Com-
puting device 600 may also be implemented as a personal
computer including both laptop computer and non-laptop
computer configurations. In addition, computing device 600
may be implemented as part of a wireless base station or other
wireless system or device.

[0058] Some portions of the foregoing detailed description
are presented in terms of algorithms or symbolic representa-
tions of operations on data bits or binary digital signals stored
within a computing system memory, such as a computer
memory. These algorithmic descriptions or representations
are examples of techniques used by those of ordinary skill in
the data processing arts to convey the substance of their work
to others skilled in the art. An algorithm is here, and generally,
is considered to be a self-consistent sequence of operations or
similar processing leading to a desired result. In this context,
operations or processing involve physical manipulation of
physical quantities. Typically, although not necessarily, such
quantities may take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared or
otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to such
signals as bits, data, values, elements, symbols, characters,
terms, numbers, numerals or the like. It should be understood,
however, that all of these and similar terms are to be associ-
ated with appropriate physical quantities and are merely con-
venient labels. Unless specifically stated otherwise, as appar-
ent from the following discussion, it is appreciated that
throughout this specification discussions utilizing terms such
as “processing,” “computing,” “calculating,” “determining”
or the like refer to actions or processes of a computing device,
that manipulates or transforms data represented as physical
electronic or magnetic quantities within memories, registers,
or other information storage devices, transmission devices, or
display devices of the computing device.

[0059] The foregoing detailed description has set forth vari-
ous embodiments of the devices and/or processes via the use
of block diagrams, flowcharts, and/or examples. Insofar as
such block diagrams, flowcharts, and/or examples contain
one or more functions and/or operations, it will be understood
by those within the art that each function and/or operation
within such block diagrams, flowcharts, or examples can be
implemented, individually and/or collectively, by a wide
range of hardware, software, firmware, or virtually any com-
bination thereof. In one embodiment, several portions of the
subject matter described herein may be implemented via
Application Specific Integrated Circuits (ASICs), Field Pro-
grammable Gate Arrays (FPGAs), digital signal processors
(DSPs), or other integrated formats. However, those skilled in
the art will recognize that some aspects of the embodiments
disclosed herein, in whole or in part, can be equivalently
implemented in integrated circuits, as one or more computer
programs running on one or more computers (e.g., as one or
more programs running on one or more computer systems), as
one or more programs running on one or more pProcessors
(e.g., as one or more programs running on one or more micro-
processors), as firmware, or as virtually any combination
thereof, and that designing the circuitry and/or writing the
code for the software and or firmware would be well within
the skill of one of skill in the art in light of this disclosure. In
addition, those skilled in the art will appreciate that the
mechanisms of the subject matter described herein are
capable of being distributed as a program product in a variety
of forms, and that an illustrative embodiment of the subject
matter described herein applies regardless of the particular

US 2011/0161974 Al

type of signal bearing medium used to actually carry out the
distribution. Examples of a signal bearing medium include,
but are not limited to, the following: a recordable type
medium such as a flexible disk, a hard disk drive (HDD), a
Compact Disc (CD), a Digital Versatile Disk (DVD), a digital
tape, a computer memory, etc.; and a transmission type
medium such as a digital and/or an analog communication
medium (e.g., a fiber optic cable, a waveguide, a wired com-
munications link, a wireless communication link, etc.).

[0060] References made in this disclosure to the term
“responsive to” or “in response to” are not limited to respon-
siveness to only a particular feature and/or structure. A feature
may also be responsive to another feature and/or structure and
also be located within that feature and/or structure. Moreover,
when terms or phrases such as “coupled” or “responsive” or
“in response to” or “in communication with”, etc. are used
herein or in the claims that follow, these terms should be
interpreted broadly. For example, the phrase “coupled to”
may refer to being communicatively, electrically and/or
operatively coupled as appropriate for the context in which
the phrase is used.

[0061] Those skilled in the art will recognize that it is
common within the art to describe devices and/or processes in
the fashion set forth herein, and thereafter use engineering
practices to integrate such described devices and/or processes
into data processing systems. That is, at least a portion of the
devices and/or processes described herein can be integrated
into a data processing system via a reasonable amount of
experimentation. Those having skill in the art will recognize
that a typical data processing system generally includes one
or more of a system unit housing, a video display device, a
memory such as volatile and non-volatile memory, proces-
sors such as microprocessors and digital signal processors,
computational entities such as operating systems, drivers,
graphical user interfaces, and applications programs, one or
more interaction devices, such as a touch pad or screen,
and/or control systems including feedback loops and control
motors (e.g., feedback for sensing position and/or velocity;
control motors for moving and/or adjusting components and/
or quantities). A typical data processing system may be
implemented utilizing any suitable commercially available
components, such as those typically found in data computing/
communication and/or network computing/communication
systems.

[0062] The herein described subject matter sometimes
illustrates different components contained within, or con-
nected with, different other components. It is to be understood
that such depicted architectures are merely exemplary, and
that in fact many other architectures can be implemented
which achieve the same functionality. In a conceptual sense,
any arrangement of components to achieve the same func-
tionality is effectively “associated” such that the desired func-
tionality is achieved. Hence, any two components herein
combined to achieve a particular functionality can be seen as
“associated with” each other such that the desired function-
ality is achieved, irrespective of architectures or intermedial
components. Likewise, any two components so associated
can also be viewed as being “operably connected”, or “oper-
ably coupled”, to each other to achieve the desired function-
ality, and any two components capable of being so associated
can also be viewed as being “operably couplable”, to each
other to achieve the desired functionality. Specific examples
of'operably couplable include but are not limited to physically
mateable and/or physically interacting components and/or

Jun. 30, 2011

wirelessly interactable and/or wirelessly interacting compo-
nents and/or logically interacting and/or logically inter-
actable components.

[0063] With respect to the use of substantially any plural
and/or singular terms herein, those having skill in the art can
translate from the plural to the singular and/or from the sin-
gular to the plural as is appropriate to the context and/or
application. The various singular/plural permutations may be
expressly set forth herein for sake of clarity.

[0064] It will be understood by those within the art that, in
general, terms used herein, and especially in the appended
claims (e.g., bodies of the appended claims) are generally
intended as “open” terms (e.g., the term “including” should
be interpreted as “including but not limited to,” the term
“having” should be interpreted as “having at least,” the term
“includes” should be interpreted as “includes but is not lim-
ited to,” etc.). It will be further understood by those within the
art that if a specific number of an introduced claim recitation
is intended, such an intent will be explicitly recited in the
claim, and in the absence of such recitation no such intent is
present. For example, as an aid to understanding, the follow-
ing appended claims may contain usage of the introductory
phrases “at least one” and “one or more” to introduce claim
recitations. However, the use of such phrases should not be
construed to imply that the introduction of a claim recitation
by the indefinite articles “a” or “an” limits any particular
claim containing such introduced claim recitation to inven-
tions containing only one such recitation, even when the same
claim includes the introductory phrases “one or more” or “at
least one” and indefinite articles such as “a” or “an” (e.g., “a”
and/or “an” should typically be interpreted to mean “at least
one” or “one or more”); the same holds true for the use of
definite articles used to introduce claim recitations. In addi-
tion, even if a specific number of an introduced claim recita-
tion is explicitly recited, those skilled in the art will recognize
that such recitation should typically be interpreted to mean at
least the recited number (e.g., the bare recitation of “two
recitations,” without other modifiers, typically means at least
two recitations, or two or more recitations). Furthermore, in
those instances where a convention analogous to “at least one
of' A, B, and C, etc.” is used, in general such a construction is
intended in the sense one having skill in the art would under-
stand the convention (e.g., “a system having at least one of A,
B, and C” would include but not be limited to systems that
have A alone, B alone, C alone, A and B together, A and C
together, B and C together, and/or A, B, and C together, etc.).
In those instances where a convention analogous to “at least
one of A, B, or C, etc.” is used, in general such a construction
is intended in the sense one having skill in the art would
understand the convention (e.g., “a system having at least one
of'A, B, or C” would include but not be limited to systems that
have A alone, B alone, C alone, A and B together, A and C
together, B and C together, and/or A, B, and C together, etc.).
It will be further understood by those within the art that
virtually any disjunctive word and/or phrase presenting two
or more alternative terms, whether in the description, claims,
or drawings, should be understood to contemplate the possi-
bilities of including one of the terms, either of the terms, or
both terms. For example, the phrase “A or B” will be under-
stood to include the possibilities of “A” or “B” or “A and B.”
[0065] It should also be understood that, the term “opti-
mize” may include maximization and/or minimization. The
term “minimization” and/or the like as used herein may
include a global minimum, a local minimum, an approximate

US 2011/0161974 Al

global minimum, and/or an approximate local minimum.
Likewise, it should also be understood that, the term “maxi-
mization” and/or the like as used herein may include an global
maximum, a local maximum, an approximate global maxi-
mum, and/or an approximate local maximum.

[0066] Reference in the specification to “an implementa-
tion,” “one implementation,” “some implementations,” or
“other implementations” may mean that a particular feature,
structure, or characteristic described in connection with one
or more implementations may be included in at least some
implementations, but not necessarily in all implementations.
The various appearances of “an implementation,” “one
implementation,” or “some implementations” in the preced-
ing description are not necessarily all referring to the same
implementations.

[0067] While certain exemplary techniques have been
described and shown herein using various methods and sys-
tems, it should be understood by those skilled in the art that
various other modifications may be made, and equivalents
may be substituted, without departing from claimed subject
matter. Additionally, many modifications may be made to
adapt a particular situation to the teachings of claimed subject
matter without departing from the central concept described
herein. Therefore, it is intended that claimed subject matter
not be limited to the particular examples disclosed, but that
such claimed subject matter also may include all implemen-
tations falling within the scope of the appended claims, and
equivalents thereof.

What is claimed:

1. A task scheduling device operatively coupled to a device
having multiple processor cores and supporting multiple net-
work interface devices, comprising:

atask analyzer unit configured to select an allocation strat-

egy for a task, based at least in part on an attribution of
the task; and

atask allocator unit configured to allocate the task to one or

more processor cores, based at least in part on the
selected allocation strategy.

2. A task scheduling device as recited in claim 1, wherein
the task analyzer unit is configured to select the allocation
strategy for the task, based at least in part on the attribution of
the task regarding a network interface device.

3. A task scheduling device as recited in claim 1, wherein
the task analyzer unit is configured to select the allocation
strategy for the task, based at least in part on one of or any
combination of the attributions of the task regarding latency,
data size, CPU usage, and parallelism.

4. A task scheduling device as recited in claim 1, wherein
the task analyzer unit is configured to retrieve the attribution
of the task from a program file being operatively associated
with the task.

5. A task scheduling device as recited in claim 1, wherein
the task analyzer unit is configured to select the allocation
strategy for the task, by referring to a table storing the attri-
bution of the task and the associated allocation strategy.

6. A task scheduling device as recited in claim 1, wherein
the task analyzer unit is configured to make a list of sub-tasks
of the task.

7. A task scheduling device as recited in claim 1, wherein
the allocation strategy includes allocating a single task to a
single processor core.

8. A task scheduling device as recited in claim 1, wherein
the allocation strategy includes allocating a single task to
multiple processor cores.

Jun. 30, 2011

9. A task scheduling device as recited in claim 1, wherein
the allocation strategy includes allocating multiple tasks to a
single processor core.

10. A task scheduling device as recited in claim 1, wherein
the allocation strategy includes allocating multiple tasks to
multiple processor cores.

11. A task scheduling device as recited in claim 1, further
comprising a resource checker unit configured to monitor
usage of each CPU and available bandwidth of each network
interface.

12. A task scheduling device as recited in claim 11, wherein
the task allocator unit is configured to allocate the task to one
or more processor cores, based at least in part on the alloca-
tion strategy and data regarding usage of each CPU and
available bandwidth of each network interface being received
from the resource checker unit.

13. A task scheduling device as recited in claim 1, wherein
the task allocator unit is further configured to prepare a thread
or a process for executing the task on the one or more proces-
SOr cores.

14. A task scheduling device as recited in claim 13, further
comprising a scheduler unit configured to control execution
of the thread and/or the process.

15. A task scheduling method used for a device having
multiple processor cores and supporting multiple network
interface devices, comprising:

selecting an allocation strategy for a task, based on an
attribution of the task; and

allocating the task to one or more processor cores, based at
least in part on the selected allocation strategy.

16. A task scheduling method as recited in claim 15,
wherein selecting the allocation strategy for the task com-
prises selecting the allocation strategy for the task based at
least in part on the attribution of the task regarding a network
interface device.

17. A task scheduling method as recited in claim 15,
wherein selecting the allocation strategy for the task com-
prises selecting the allocation strategy for the task based at
least in part on one of or any combination of the attributions
of' the task regarding latency, data size, CPU usage, and par-
allelism.

18. A task scheduling method as recited in claim 15,
wherein selecting the allocation strategy for a task, based on
an attribution of the task comprises selecting the allocation
strategy for atask by retrieving the attribution of the task from
a program file being operatively associated with the task.

19. A task scheduling method as recited in claim 15,
wherein selecting the allocation strategy for a task, based on
an attribution of the task comprises selecting the allocation
strategy for a task by referring to a table storing the attribution
of' the task and the associated allocation strategy.

20. An article comprising:

a signal bearing medium comprising machine-readable
instructions stored thereon, which, if executed by one or
more processors, operatively enable a computing device
to:

select an allocation strategy for a task, based on an attribu-
tion of the task; and

allocate the task to one or more processor cores, based at
least in part on the selected allocation strategy.

sk sk sk sk sk

