
Web情報システム構成法
第7回 フォームインタラクション

萩野 達也（hagino@sfc.keio.ac.jp）

1

https://vu5.sfc.keio.ac.jp/slide/

Slide URL

静的Webページ vs 動的Webページ

2

 静的Webページ
 内容が変わらないページ

 通常の文書は静的

 HTMLとしてWebサーバ上に置いておく

 維持管理の関係で動的に生成していることもある

 動的Webページ
 内容が変化するページ

 利用の状態によって中身が変化する

 Webアプリケーションでの利用

 例：
 オンラインショッピングのショッピングカート

 検索エンジンの結果

オンラインショッピングの例

3

 静的に用意しても良いページ
 お店に関する情報を書いたページ

 買い物の仕方を説明したページ

 商品に変化が少ない場合には，商品の説明も静的に用意し
ても良い

 動的に用意しなくてはならないページ
 在庫が変化する商品に関するページ

 ショッピングカートの中身を表示するページ

 決算を行うページ

 ユーザ登録するページ

 キーワードなどを入れて商品を絞り込むページ

インターネット

Webアプリケーション

4

 オンラインショッピングのためのWebサイトの構成

Webサーバ

ファイルサーバ

HTML

HTML利用者

静的Webページ
アプリケーション

動的Webページ

データベース

テーブル
テーブル

データベース操作
SQLなど

オンラインショッピングサイト

Formインタラクション

5

 form
 ユーザの入力をWebアプリケーションに渡す
 データを入力するためのフォームを表示する
 HTTPのGETあるいはPOSTによりデータを渡す

 GET: URLに入力データをエンコード
 POST: HTTPリクエストの本体として入力データを送る

氏名:

電話番号:

E-mail:

ピザの注文フォーム

大きさ: 大 中 小

トッピング: ベーコン

チーズ増量

オニオン

注文する

Webサーバ
アプリケーション

（1）HTTPリクエスト

（3）処理

（2）入力データ

（4）処理結果
（5）HTTPリプライ

HTTP (Hypertext Transfer Protocol)

6

 Web資源を操作するプロトコル

 ５つの主なメソッドを持つ
 HEAD

 資源の情報を得る

 GET
 資源の表現を取得する

 PUT
 資源を作成あるいは更新する

 DELETE
 資源を削除する

 POST
 データを処理するために送る

Web資源

HEAD GET

取得

更新

PUT DELETE

処理

POST

HTML form要素

7

 メソッド
 get あるいは post を指定

 副作用がないときには get

 副作用があるときには post

 指定がないときには get と理解される

 URL
 処理を行うアプリケーションのURL

 外部プログラムの cgi や，モジュールの php などのURLを指定

 エンコーディング
 送信するデータの形式を指定（指定しない場合はurlencoded）

 application/x-www-form-urlencoded

 multipart/form-data

 text/plain

 フォームの中身
 input 要素を主に用いて入力フォームを指定

<form method="メソッド" action="URL" enctype="エンコーディング">

フォームの中身
</form>

form の例

8

<form method="post" action="order.cgi">

<div>

<label>氏名: <input type="text" size="15" name="name"></label>

<label>電話番号: <input type="text" size="10" name="tel"></label>

<label>E-mail: <input type="text" size="20" name="mail"></label>

<fieldset>

<legend>大きさ:</legend>
<label><input type="radio" name="size" value="large"> 大</label>

<label><input type="radio" name="size" value="medium"> 中</label>

<label><input type="radio" name="size" value="small"> 小</label>

</fieldset>

<fieldset>

<legend>トッピング:</legend>

<label><input type="checkbox" name="topping" value="bacon"> ベーコン</label>
<label><input type="checkbox" name="topping" value="cheese"> チーズ増量</label>

<label><input type="checkbox" name="topping" value="onion"> オニオン</label>
</fieldset>

<input type="submit" value="注文する">
<input type="hidden" name="user" value="12345">

</div>

</form>

テキスト入力

ラジオボタン

チェックボックス

送信ボタン

隠し値

input type="text"

9

 テキスト入力コントロール
 ユーザが文字列を入力できるように箱を表示
 <label>ラベル </label>

 ユーザに何を入力する箱であるかを示す

 size="文字数"

 入力の箱の大きさを文字数で指定

 CSSによる幅指定の方が正確

 name="名称"

 formデータとしての値の名前

 複数行のテキスト入力の場合には textarea を利用
<textarea cols="列数" rows="行数" name="名称">

</textarea>

<label>ラベル
<input type="text" size="文字数" name="名称">

</label>

ラベル：

input type="radio"

10

 一つだけ選択させる
 <fieldset> </fieldset>

 同じ選択のボタンをグループする

 name="名称"

 formデータとしての値の名前
 同じボタンのグループは同じ名称

 value="値"

 選択したときに送られる値

 <label>選択</label>

 選択するものの名前

<fieldset>

<legend>ラベル</legend>

<label><input type="radio" name="名称" value="値1"> 選択1</label>

<label><input type="radio" name="名称" value="値2"> 選択2</label>

<label><input type="radio" name="名称" value="値3"> 選択3</label>

</fieldset>

ラベル 選択1 選択2 選択3

input type="checkbox"

11

 複数選択可能
 <fieldset> </fieldset>

 同じ選択のボタンをグループする

 name="名称"

 formデータとしての値の名前
 同じボタンのグループは同じ名称

 value="値"

 選択したときに送られる値

 <label>選択</label>

 選択するものの名前

<fieldset>

<legend>ラベル</legend>

<label><input type="checkbox" name="名称" value="値1"> 選択1</label>

<label><input type="checkbox" name="名称" value="値2"> 選択2</label>

<label><input type="checkbox" name="名称" value="値3"> 選択3</label>

</fieldset>

ラベル 選択1 選択2 選択3✔ ✔

input type="submit"

12

 フォームで入力した内容をURLで指定されたアプリケー
ションに送信する
 value="名前"

 ボタンに表示される名前

 入力した内容を取り消す type="reset" リセットボタ
ンも存在する
 フォームのすべての入力を取り消す

 デフォールト値に戻す

 送信を取り消すわけではない．

<input type="submit" value="名前">

名前

フォーム送信データ

13

 デフォールトでは application/x-www-form-urlencoded 形式
となる
 URLとしても大丈夫な文字列にして送信
 GETの場合には，実際にURLとして保存可能

名称1=値1&名称2=値2&名称3=値3&……

 urlencode
 スペースは「+」にする
 数字とアルファベットと「*-._」についてはそのまま
 それ以外は文字コードを1バイトごとに16進数2桁として「%」を前につけ
て表す

 ファイルを送信するなどの場合にはurlencodedは利用できない
 multipart/form-data を利用する

フォームデータの処理

14

 Webサーバ内のモジュールで処理
 Apacheサーバの場合，perlやphpのモジュールがある

 サーバ内から，perlやphpにフォームデータが渡され処理される

 JSP (Java Server Page）の場合には，特別なページとして記述

 外部CGIに処理を渡す
 CGI （Common Gateway Interface）は外部の実行可能プログラム

 フォームのデータが送られてくると CGI を起動する

 フォームのデータを CGI に送る
 GETの場合には環境変数 QUERY_STRING に設定される

 POSTの場合には CGI の標準入力に渡される

モジュール CGI

良い点 軽い CGIプログラムの権限が
指定可能

注意点 プログラムがWebサー
バの権限のまま

重い

CGIの例

15

 CGIのプログラミング言語

 サーバ上で実行可能であればプログラミング言語の制約はない

 シェルスクリプトでも構わない

 デフォールトの拡張子は .cgi

利用者

Webサーバ
http://web.sfc.keio.ac.jp/~hagino/wis/hello.cgi

#!/bin/csh -f

echo "Content-Type: text/plain"

echo

echo "Hello, World!"

~hagino/public_html/wis/hello.cgi

Hello, World!

 CGIはHTTPのヘッダと本体を生成

 ヘッダと本体は空行で区切る

 Content-Type で本体の形式を指定

フォームのリプライ

16

 フォームのデータ
 HTTPのPOSTあるいはGETメソッドでCGIに送られる

 リプライ
 Content-Type で指定することで，いろいろな形式で返信可能

 Webのインタラクションとしては，フォームのリプライもHTMLであるこ
とが望ましい

 フォームの処理はプログラムで行われる

 プログラムでHTMLを生成する必要がある
 静的なHTMLと動的なデータを混ぜる

 JSP, PHP
 プログラムとHTMLを混在させることが可能

PHP

17

 PHP: Hypretext Preprocessor の略
 サーバサイドスクリプト言語の一つ
 HTMLとプログラムを混在可能
 拡張子を php とすると，PHPのプログラムとして実行し，その結果を
ブラウザに返す

 フォームのデータは大域変数 $_REQUEST に設定される

利用者

Webサーバ
http://web.sfc.keio.ac.jp/~hagino/wis/form.php

<?php

$name = $_REQUEST['name'];

?>

<!DOCTYPE html>

<html>

<head>

...

<body>

<h1>テスト</h1>
<?php echo "<p>Hello, World!</p>"; ?>

~hagino/public_html/wis/form.php

<html>...<p>Hello, World!...

 HTMLはそのまま書く

 PHPのプログラム部分は
<?php ?> で囲む

ピザの注文を受け取るPHPの例

18

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<title>注文確認</title>

</head>

<body>

<h1>注文確認</h1>

<p>ピザの注文ありがとうございました．</p>
<p>氏名: <?=$_REQUEST['name']?>

電話番号: <?=$_REQUEST['tel']?>

電子メール: <?=$_REQUEST['mail']?>

大きさ: <?=$_REQUEST['size']?>
</p>

</body>

</html>

phpの式の値を挿入する

セッション

19

 セッション
 それぞれのHTTPリクエストは独立している

 HTTPサーバはステートレスである

 同じユーザからの一連のリクエストであることを認識する必要がある

 複数ユーザが同時に利用していることを忘れない

 セッションの実装
 Cookie を用いる

 サーバからブラウザに値を記憶させる

 以降のリクエストでは記憶した値を付けて送信する

 セッションを識別するためのデータをHTMLに埋め込む
 <input type="hidden" name="user" value="1234">

商品A 商品B 会計
複数のHTTPリクエストを
一つのセッションとして認識

利用者

Cookie の仕組み

20

 Cookieの設定
 HTTPリプライの Set-Cookie ヘッダを使う

Set-Cookie: 名前=データ; expires=日付;

 与えられた名前でデータをブラウザが記憶

 有効期限を設定（過去を設定することで消去することができる）

 ドメインやパスを指定することも可能

 Cookieの取得
 HTTPリクエストで送られる
 CGIの場合には，環境変数の HTTP_COOKIE に「；」区切りで与えられる

名前=データ; 名前=データ; …

 PHPの場合には，$_COOKIE[名前] 変数に設定される

オンラインショッピングでのCookieの利用

21

 商品のページも静的ではなく，CGIやPHPなどの動的なもの
で作成する

 訪問した時にCookieが設定されているか調べる

 Cookieがない場合（あるいは想定外の場合）

 利用者のセッションのためのユニークなIDを生成しCookieとしてせって
するようHTTPリプライを送る

 セッションのユニークIDを使って，買い物かごなどを管理する

 利用者登録している場合には，利用者のデータと結びつけても良い

 Cookieに利用者名やパスワードを設定してはいけない（セキュリティ
的に問題となる）

課題：フォームの作成

22

 架空のオンラインショップに注文のフォームを設置しなさい．
 フォームは商品のページにあっても，注文専用のページでもかまいません．
 フォームのデータを受け取るCGIあるいはPHPを作成しなさい．

 提出
 https://vu5.sfc.keio.ac.jp/kadai/
 注文フォームのURLを提出してください
 締め切り： 6月3日正午

氏名:

E-mail:

商品の注文

注文する

商品名:

氏名: 慶應太郎

E-mail: keio@keio.jp

注文の確認

商品名: ペンマークのTシャツ

下記の注文ありがとうござい
ました．

まとめ

23

 フォームインタラクション

 form

 input

 HTTP: POST, GET

 フォーム処理

 CGI

 PHP

 セッション

