
Web情報システム構成法
第9回 JavaScript入門（2）

萩野 達也（hagino@sfc.keio.ac.jp）

1

https://vu5.sfc.keio.ac.jp/slide/

Slide URL

JavaScript入門（前回）

2

 オブジェクト指向について
 JavaScriptの誕生
 プロトタイプベースのオブジェクト指向

 言語
 構文および制御構造

 代入

 条件文

 繰り返し

 関数

 データ型
 基本

 オブジェクト

 HTMLへの埋め込み
 <script> …… </script>
 Document Object Model

JavaScriptの実行

3

 読み込み時

 <script> …… </script> は読み込み時に実行される．

 関数などは定義されるだけなので，実際の実行ではない．

 変数の初期化なども行われる．

 イベント発生時

 ボタンを押すなどのイベントが発生した時に，指定されたプロ
グラムが実行される．

 イベントハンドラ

 イベント処理を行うプログラム

 前もってイベントごとに登録をしておく

 イベントは非同期に発生する．

同期入力と非同期入力

4

 同期入力

 プログラムが指定した時に
入力を行う．

 非同期入力

 プログラムが別の処理中
にも入力が発生する．

処理

入力待ち

入力の処理

処理

入力の処理
イベントハンドラー

通常処理

JavaScript Event

5

 キーボード関係

 keydown, keyup, keypress

 マウス関係

 mouseover, mousedown, mouseup

 要素関係

 click, focus, input

 ウインドウ関係

 resize, scroll

イベント処理

6

 イベントハンドラ
 イベントが発生した時に行う処理を記述

 HTML要素の属性として指定

 要素やオブジェクトに対してイベントハンドラを設定する

 HTMLでの指定

<button onclick="イベントハンドラ">ボタン</button>

<p>どこでもクリックできる</p>

 ＪａｖａＳｃｒｉｐｔ内での指定
 HTML要素に関係ないものは，この方法でしか指定できない

element.addEventListener(イベント, 関数);

document.getElementById('myBtn').addEventListener('click', function(e){

document.getElementById('demo').textContent = "Hello World!";

});

 設定したイベントハンドラには発生したイベントが渡される．

JavaScriptの並列処理

7

 JavaScriptは基本的にシングルスレッドです．
 同時に複数の処理を行わない．
 変数をロックして保護するなどの必要はない．
 イベントはキューに貯められ，一つづつ処理される．

メインスレッドイベント処理A イベント処理B

イベントC新イベント イベントキュー

イベント処理C

現在

次のイベントを取り出し実行イベントをキューに入れる

 あるイベントの処理が重いと，処理が滞る．
 WebWorkersを使ってバックグラウンドで処理を行うことも可能．
 マルチスレッドになる．
 WebWorkersに処理のためのメッセージを送り，結果をイベントとして受け取る．
 WebWorkersは直接はDOMを操作することはできない．

タイマーの利用

8

 一定時間後に何かの処理を行いたい
 setTimeout でタイムアウトのイベント処理を指定

 一定時間間隔で何かの処理を行いたい
 setInterval で一定間隔で実行する処理を指定

timer = setTimeout(関数, ms時間);

timer = setInterval(関数, ms時間);

setTimeout(関数, 1000);
関数

1000ms

setInterval(関数, 1000);

関数

1000ms

関数

1000ms

関数

1000ms

タイマーを止めるには clearTimeout(timer)

タイマーを止めるには clearInterval(timer)

setIntervalの例

9

 デジタル時計を作ってみよう
<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<title>Javascript Timer</title>

</head>

<body>

<h1>Javascript Clock</h1>

<p id="clock"></p>

<script>

function showTime() {

var element = document.getElementById('clock');

var now = new Date();

element.textContent = now.getHours() + ':' + now.getMinutes()

+ ':' + now.getSeconds();

}

showTime();

setInterval(showTime, 1000);

</script>

</body>

</html>

Ajax

10

 Ajax = Asynchronous JavaScript + XML
 Web 2.0で登場した．

 JavaScriptとXMLを使って非同期にサーバとの通信を行う．

 Webページを取得するHTTPは基本的に同期的
 ページを取得するリクエストをサーバに送り，文書が返ってくるまで

待つ

 非同期的な処理を行いたい
 最初に軽いページとして全体を受け取り，ユーザがブラウズしてい

る間に徐々に中身を増やしていく

 ユーザの要求に従って内容をサーバから取得する

 フォームの送信を行わずに，サーバにデータを送る

XMLHttpRequest オブジェクト

11

 JavaScript内からhttpを使ってサーバにアクセスしデータ
を取得する

var xhr = new XMLHttpRequest();

xhr.addEventListener('load', (event) => {

if (xhr.status == 200) {

xhr.responseText にサーバから送られてきたデータが入っている
}

};

xhr.open("GET", "URL", true);

xhr.send();

HTTPを行うオブジェクトの生成

送られてきた
データの処理

HTTPリクエストのメソッドとURI

非同期処理を指定

リクエストを送る
GETまたはPOSTメソッドを指定

GETとPOSTでのデータの受け渡し

12

 GET
 URLに問い合わせの形で追加する

 POST
 send でデータを渡す

 データの形式を指定する必要がある
 GETと同じにするには application/x-www-form-urlencoded

var xhr = new XMLHttpRequest();

xhr.addEventLisener('load', (event) => { ... });

xhr.open("GET", "http://.../chat.php?method=get&id=123");

xhr.send(null);

var xhr = new XMLHttpRequest();

xhr.addEventLisener('load', (event) => { ... });

xhr.open("POST", "http://.../chat.php");

xhr.setRequestHeader("Content-type", "application/x-www-form-urlencoded");

xhr.send("method=post&user=abc&message=Hello%20World");

URIに書くことのできる文字には制限があるため encodeURIComponent を使ってエンコードすると良い

... + '&message=' + encodeURIComponent(m);

JSON

13

 サーバとクライアントでJavaScriptのオブジェクトをやり取りする場合には，
JSON形式を用いることが多い．

 JSON = JavaScript Object Notation
 JavaScript以外でも利用できるようにJavaScriptのデータを表現したもの
 JavaScriptデータのシリアライズ

{ name:"Hagino", age:20, class:["Web", "Haskell"] }

{"name":"Hagino", "age":20, "class":["Web", "Haskell"]}

JavaScriptデータ

JSON
シリアライズ（stringify） デコード（parse）

 x = JSON.stringify(obj);

 JavaScriptのデータobjをJSONとしてシリアライズした文字列を返す

 obj = JSON.parse(x);

 JSON文字列をデコードしてJavaScriptのデータを返す

チャットを作ってみよう

14

 複数人がメッセージを書き込み，それを共有できるチャットの
アプリケーションを作ってみましょう．

チャットサーバ

メッセージの書き込み メッセージの読み出し

チャットメッセージの管理

チャットサーバAPI

15

 チャットサーバURL
 http://web.sfc.keio.ac.jp/~hagino/wis/chat.php

 メッセージの書き込み
 引数

 method=post

 user=ユーザ名

 message=メッセージ

 emotion=感情
 happy, sad, fear, disgust, angry, suprise

 戻り値（JSON）
 { id: メッセージ番号 }

 メッセージの読み出し
 引数

 method=get

 id=メッセージ番号

 戻り値（JSON）
 { id: メッセージ番号, user: ユーザ名, message: メッセージ, emotion: 感情 }

与えられたメッセージ番号より大きなメッセージ番号を持つ
メッセージの中で，最もメッセージ番号が小さいものを返す

chat.php

課題:チャットのクライアントを作成しなさい

16

 チャットサーバのAPIを使って，チャットを行うクライアントを作成しなさい．

 CSSを使ってスタイルをカスタマイズしなさい．

 感情表現を追加しなさい．

 感情を選択肢で入力．

 感情に従って，表示の色などを変える．

 提出

 https://vu5.sfc.keio.ac.jp/kadai/

 HTML（JavaScript）を提出

 JavaScriptはHTMLに埋め込むこと

 締め切り： 6月16日正午

<!DOCTYPE html>

<html>

...

<body>

<header><h1>チャット</h1></header>
<article>

<form id="f">

<div>

<label>氏名: <input type="text" id="u"></label>

<label>メッセージ: <input type="text" id="m"></label>

<label>感情: </label>

<input type="submit" value="書き込む"

onclick="sendMessage();return false;">

</div>

</form>

<div id="c"></div>

<script>

function sendMessage() { ... }

function getMessage(id) { ... }

getMessage(0);

</script>

</article>

</body>

</html>

chat.html例

サンプルchat.html

17

 メッセージの書き込み
 氏名とメッセージを入力できるformを用意
 「書き込み」ボタンでsendMessageを呼び出す
 formの本来のsubmitを抑制するためにreturn falseとする
 sendMessage関数

 formの入力テキストを取り出し，method=postとしてchat.phpに送る

 メッセージの読み出し
 getMessageによりサーバからメッセージを受け取る
 getMessage関数

 method=getとしてchat.phpに送る
 idは自分が受け取っている最新のメッセージの番号を与える
 idの初期値は0で始める
 受け取ったメッセージをHTMLの適当なところに挿入する
 次のメッセージを受け取るために，再帰的にgetMessageを呼び出す

感情

18

https://www.verywellmind.com/an-overview-of-the-types-of-emotions-4163976

ラジオボタンの値の確認

19

<form id="f">

<div>

Emotion:

<label><input type="radio" name="emotion" value="happy">幸福</label>

<label><input type="radio" name="emotion" value="sad">悲しみ</label>

<label><input type="radio" name="emotion" value="fear">不安</label>

<label><input type="radio" name="emotion" value="disgust">嫌悪</label>

<label><input type="radio" name="emotion" value="angry">怒り</label>
<label><input type="radio" name="emotion" value="suprise">驚き</label>

<input type="submit" onclick="checkEmotion();return false;">

</div>

</form>

<script>

function checkEmotion() {

var f = document.getElementById('f');

window.alert(f.emotion.value);

}

</script>

Emotion: 幸福 悲しみ 不安 嫌悪 怒り 驚き

送信

まとめ

20

 JavaScriptの続き

 同期処理と非同期処理

 イベント

 タイマー

 XMLHttpRequest

