ik eilpinly A EIy)

g10[E] BELHSX

X

B Eth

hagino@sfc.keio.ac.jp

Slide URL

https://vu5.sfc.kelo.ac.|p/slide/

BHIRRE LTS

- [EDEE
- Bool ={ True, False }

« Char={'a",'b, ... }
- Int={...-2,-1,0,1, 2,3, ... }

- B EIRE
- HaskelllZa /s IILEIZRDEZRET S
- B3E9 = a2 NAILBF (v.s. BB = 3E1THF)
- ITRTOXIFIELWVEZF>TLWSARELH S

- BUHEER
- HaskelllxzxX D& %R/ 5
B T N s wae -t bl b e - s N B ST JY. D 1

main = print f

main = print £
II'. f::Int
"80" n

f = read f = read "80"

=1 —

BEE

var,, var,, ..., var, ::. type

- RBOEZHTRHICEST IS
- e RS

- TATSRDBERERET S = T/ T L0I<AGS

defaultLines: :Int
ul, ol, 1li::String -> String

ROREE
- AOPT, ADEEEETD

luckyNumber = (7 :: Int)
unluckyNumber = (13 :: Integer)

. SR

% 8/ (Polymorphic)
BEREHEECCENBS

- % FE#I72E (Polymorphic type)
C BEHEEAFE

length :: [a] -> Int

zip :: [a] -> [b] -> [(a,b)]

- BERIEDLIGERZBIEYSD

KREp)7T—>4

-dataBEEZF > TH LW AZERITHENTES.

data T v; v, ... = D, t,; t,, ... |
(I D, tg; tgp ... |
DC<1 t< |
R Nm

AV RRS94 T—AAVANSYA

- BT OEFT—2aVAR5945D,, Dg, Dg,...I2&>THELND.

- BL T—RAAVRANSIRIEKILFETIROTESTIEUMFZLLN.

- N
51

data Anchor = A String String

- #iILLVE Anchor 2 &

- A A Anchor D T—HaAVNSU4
- A [X2D® String 74— ILRZ#ED
A :: String -> String -> Anchor

href = A "http://www.sfc.keio.ac.jp/" "SFC Home Page"

c T—ARAAV RS IBRINE—U KD TI4—ILRIZTOEART S

compileAnchor (A url label) = ...

TJ4—ILESAR)L

e T—ARAVARNSIEDITA—ILRIZSANILEZFIFTFAZENTES

data Anchor = A { aURL :: String, alabel :: String }

s GRNNWEFLSOTI4—ILEETIOERT S

compileAnchor (A { aURL = u, alabel =1 }) = ...

anchorUrl (A { aURL = u }) = u

« T4—ILESRN)LIEELIRELTHIATES
- aURL :: Anchor -> String
- aLabel :: Anchor -> String

href = A "http://www.sfc.keio.ac.jp/" "SFC Home Page"

main = do print (aLabel href)

. R
J4—ILESRJL(DDF)

s T4—ILEIRILZEFESE, FEITHED—EDIT4—ILED
ExZEL-EFESEMNTES

data Anchor = A { aURL :: String, alabel :: String }

href = A "http://www.sfc.keio.ac.jp/" "SFC Home Page"

main do print href

print (href { alLabel = "that" })

|

[A "http://www.sfc.keio.ac.jp/" "SFC Home Page"|ZH N

[A "http://www.sfc.keio.ac.jp/" "that"|ZHH

. N
ZHENTIRTER

BRI FOCETEH T —IRETERET HENTES

data Stack a = MkStack [a]

i =
RITE
MkStack [True, False] -—- Stack Bool
MkStack ['a', 'b', 'e¢'] -- Stack Char

MkStack ["aa", "bb"] -- Stack String

5I|ZE (Enumeration Type)
BIERE | TEETHCENTES

data OpenMode = ReadOnly | WriteOnly | ReadWrite

- OpenMode®B DIEIZIEZDDT—RAV ATV ATHESIEMTES.

- OpenMode 3D DEFHFD:
- ReadOnly
* WriteOnly
- ReadWrite

- Bool &% ZHY

data Bool = True | False

3 F{K (Union)

11

- wl

- CEEEM union ERILEIICHRAREEERIT HEMNTES

data PTItem

Param Int | Text String

- PTItem D{EIL Param EEH O, Text EXFIDELL

MTBH S

Text "daikon"
Param 5

isText: :PTItem -> Bool
isText (Text) = True
isText (Param) = False
text: :PTItem -> String
text (Text s) = s

text (Param) = " (param)"

BIEZ8 (Recursive) 75 EY
HOEEQDTENEERMIES

Empty @ Push

data Stack a = Empty | Push a (Stack a)

- Stack a DB

Emtpy

Push 1 Empty

Push 2 (Push 1 Empty)

Push 3 (Push 2 (Push 1 Empty))

- Stack a DEZSHET S

isEmpty::Stack a -> Bool
isEmpty Empty = True
isEmpty (Push _) = False

top::Stack a -> a
top (Push x) = x

pop: :Stack a -> Stack a
pop (Push _s) = s

type B

Ty

type T v, v, ... = ¢t
YP T 1 V2 ‘\\\
Bav kS - EEH e

BETARICAMEMTAIETHLLEEES
- T—RAAVAMZYRITHL

type MyList a = [a]

-MyList a [& [a] &RILC
- [a] 1279 HBE%X MyList a [CESZENTES

newtype &

newtype T v, v, ... D t
YP /I\ 1\<2 \\

Ty

I \t
, type
e variables
type constructor P data constructor

T ARICLEIEMTRETHLLEEHES
- TARAVANSIEIDRH B

newtype StackNT a = MKStackNT [a]

data StackNT a = MKStackNT [a]

c T—RAVAISIEN—DFETD data EEEIFEALERL
- newtypeD A HNAERRIRH E il
- StackNT a [XFEAIZ [a] ELTRIEESIN TS

BHS5R

- ZHRMGEOFAICHNZEMN TS

- sort :: [a] -> [a]

- sort [FEEDHDYRALNEHUVEZLIENTESHITTIEAEL. EFEREEZEMZEL
EULNTFZELY.

- BIHOSRX(EIZ, VT5R)
- BIDES
- BIGSZADBTARIEIFDRISADISAAIREEREETINENHS.

- {5l: oxrd V5 X
- ord VS RIZETAEDEIXLLE T HENTES

sort::m [a] -> [a]

- (0rd a) => [FHRLEH a (I THHFIZMATLNS
- a [ord Y5 RIZEBTAETHLELIFALY

- DS AMICITMABE R H D

- 5l: Eq V5 R
- EqQ V3 R(E Ord 95 ADA—I\UF A
- EqQ VS RI& (==) MITRAYYE

A—N\DIT5R
DIAAIYR: (==), ...

HITI5X
DS ARXIYER: (=), (>=), ...

classB &
-Eq 7R

class Eq a where
(==), (/=) :: a -> a -> Bool -- J9SRAIYFDEE
x == y = not (x /= vy) —-= (==)9SARAYED T IH+—IVFRE
X /=y = not (x ==y) - (/=) DSARAIYRDTIA—ILIRE

- 0rd VT A(EQ ITRER—INISRET D)

class (Eq a) => (Ord a) where
compare :: a -> a -> Ordering
(<), (=), (), (>=) :: a -> a -> Bool
min, max :ra ->a -> a
compare x y | x == = EQ
| x <=y = LT
| otherwise = GT
X <=y = compare x y /= GT
X < y = compare x y == LT
X > y = compare x y /= LT
X > y = compare x y == GT
max xy | x <=y = y
| otherwise = x
min xy | x <=y = x
| otherwise = y

instance&E &

BN HSITRIZEBLTWSIEZES

data Anchor = A String String

instance Eq Anchor where
(Aul) == (Au'l') = (u==1u') && (1 =1")

-deriving B
c DRI BEMGIESICIEIV AT LICBFEESITLEETES
- Eq, Ord, Enum, Bounded, Show, Read

data Anchor = A String String deriving (Eq, Show)

LNDOHhDIF R

Eq
10, (->)
L5t

Ord
IO, IOError,
(->) L5t

Num

Int, Integer,
Float, Double

Bounded
Int, Char, Bool, (),
Ordering, tuples

Functor
I0, [], Maybe

Enum

(), Bool, Char,
Ordering, Int, Integer,
Float, Double

Real

Int, Integer,
Float, Double

Fractional
Float, Double

Monad
IO, [], Maybe

RealFrac
Float, Double

Integral
Int, Integer

Floating
Float, Double

MonadPlus
I0, [], Maybe

RealFloat
Float, Double

Bl : 5%

- ﬁ%ﬂliﬁ%tﬁﬁd)zomf—&*ﬂb\%’@?’cué
- BEOARTELTT—HEZEES

data Rat = Rat Integer Integer

main = print $§ Rat 2 3

- print 95 &IEXTELL
- print [& show AVYRMNEZIN TESTIEULMFEL
- print::Show a => a -> IO ()

data Rat = Rat Integer Integer deriving Show

main = print $ Rat 2 3

- INTHERULWASHMODERTNMNIRat 2 3JDFEFEFTENLLLELY
- B4 T show *YwkrEEET 3

data Rat = Rat Integer Integer

instance Show Rat where
show (Rat x y) = show x ++ "/" ++ show y

main = print $ Rat 2 3

- DHORLECEITEEESTNIEELL?

E”/ﬁﬁo) EE]?&;&IE%Z
- T—RAVANSOZINF—%F A

b=

data Rat = Rat Integer Integer

instance Show Rat where
show (Rat x y) = show x ++ "/" ++ show y

add: :Rat -> Rat -> Rat
add (Rat x y) (Rat uv) = Rat (x * u + y * v)

main = print $ add (Rat 1 2) (Rat 1 6)

(y * v)

PE(DDE)

(+) ’@ (*) ZfEL =0
- NUMISADAV ARV AIZT 3

class Num a where
(+) :: a -> a -> a
(*) :: a ->a -> a
negate :: a -> a -- HBWE (-):: a ->a -> a
abs :: a -> a
signum :: a -> a -- abs x * signum x == x &im/-I &
fromInteger :: Integer -> a

FEE6DZEZEL, RatZNUMVTADNA U AR XIZT 5

instance Num Rat where
(Rat x y) + (Rat u v) Rat (x *u +y *v) (y * v)
(Rat x y) * (Rat u v) Rat (x * u) (y * v)
negate (Rat x y) = Rat (- x) y
abs (Rat x y) = Rat (abs x) (abs y)

signum (Rat x y) | x == = fromInteger 0
| x * y > 0 = fromInteger 1
| otherwise = fromInteger (-1)

fromInteger x = Rat x 1

main = print $ Rat 1 2 + Rat 1 6

HEBITE9—1

rat.hs

import System.Environment
data Rat = Rat Integer Integer

instance Show Rat where
show x = show (num x) ++ "/" ++ show (num y)

instance Num Rat where

main = do args <- getArgs

let x = read (args !! 0)
let y = read (args !! 1)
let u = read (args !! 2)
let v = read *args !! 3)
print $§ Rat x y + Rat u v
print $§ Rat x y - Rat u v
print $§ Rat x y * Rat u v

- RDRZBIELD#ZEFTERSEES0
- DHOFHEHZERENBRI S G- TULVEL
c DHERTLIZEZIZHEBIZEADELHAD(EH LT
- HHEEEIBRIEICHEIDEL N THCEHTRRLEZL

