
FUNCTIONAL PROGRAMMING
NO.1 INTRODUCTION TO HASKELL
Tatsuya Hagino
hagino@sfc.keio.ac.jp

1

https://vu5.sfc.keio.ac.jp/slide/
lecture slide URL

Lecture Slide System
• Please access to:

• Select: Fundamentals of Logic

2

https://vu5.sfc.keio.ac.jp/slide/

CNS Login Name

CNS Password

Select Lecture

Functional Programming
• Procedural Programming

• write steps to solve the problem
• programs are executed line by line
• most popular way of programming
• ex. FORTRAN, C, Java, Javascript, …

• Logic Programming
• write logical formulae (or rules) to solve the problem
• the order of rules does not matter
• no side effect
• no assignment
• ex. PROLOG

• Functional Programming
• combine functions to solve the problem
• order of evaluation does not matter
• no side effect
• no assignment
• ex. LISP, FP, ML, Haskell

3

Model of Computing
• Turing Machine

• an infinite tape and a finite state automaton
• Universal Turing Machine

• Recursive Function
• primitive recursive function + mu operator
• f(x+1) = (x+1)×f(x), f(0) = 1

• Lambda Calculus
• function abstraction + function application
• (λx.(λy.xy))(λx.x) → (λy.(λx.x)y) → λy.y

4

$ 5 2 @
head

tape

lambda calculus

LISP

ML

Haskell

untyped lambda calculus

typed lambda calculus

monad

Programming Language Haskell
• Pure functional programming language

• no side effect
• referential transparency

• Strong typing
• type checked before compilation

• Polymorphism
• Functions may be applied to multiple type values.

• Non-strict
• lazy evaluation

• Monad
• order evaluation

5

Haskell Brooks Curry
• American mathematician and logician

(1900/9/12 - 1982/9/1)

• combinatory logic
• S, K, I
• equivalent to lambda calculus

• Curry's Paradox
• If this sentence is true, then Japan is in Europe.

• Curry-Howard correspondence
• logic ⇔ computation
• proof as program

• Currying
• (A×B → C) → (A → (B → C))

6

Installing Haskell to Mac OS X
• Start Terminal application (in /Applications/Utilities folder)

• Use Finder or LaunchPad

7

% brew install stack
(message output)

% rehash

% stack setup
(message output)

% stack path
(message output)

% stack ghci
GHCi, version 8.8.4: http://www.Haskell.org/ghc/ :? for help
Prelude> :quit
Leaving GHCi
%

If necessary (stack command not found)

Test the installation

Installing Haskell to Windows (1)
• Google 'Haskell Tool Stack'

• https://docs.haskellstack.org/en/stable/README/

8

Installing Haskell to Windows (2)
• Install the stack by using

the installer
• Start Command Prompt

9

C:Users¥hagino>stack setup
(message output)

C:Users¥hagino>stack path
(message output)

C:Users¥hagino>stack ghci
GHCi, version 8.8.4: http://www.Haskell.org/ghc/ :? for help
Prelude> :quit
Leaving GHCi
C:Users¥hagino>

Test the installation

Other OS
• https://haskell.org/platform/

10

Hello, World!
• Write the first Haskell program.

1. Write the following line as "hello.hs".

2. Compile it using "stack ghc" command.

3. Execute the compiled program.

11

main = putStrLn "Hello, World!"

% stack ghc hello.hs
[1 of 1] Compiling Main (hello.hs, hello.o)
Linking hello ...

% hello
Hello, World!

C:¥> hello.exe
Hello, World!

Windows

Direct/Interactive Execution
• Direct execution
• Execute programs without compiling
• use "stack runghc" command

• Use interactively by "stack ghci" command.

12

% stack runghc hello.hs
Hello, World!

% stack ghci
GHCi, version 8.10.1: http://www.haskell.org/ghc/ :? for help
Prelude> 1 + 2
3
Prelude> putStrLn "Hello, World!"
Hello, World!
Prelude> :quit

main action

• This is the definition of variable "main".
• The value of "main" is not a function, but an action.
• "putStrLn" is a function.

• "putStrLn" takes a string literal "Hello, World!".
• "putStrLn" returns an action which outputs the given string.

• When a Haskell program is executed, the main action is
evaluated (i.e. executed).

• Function application may not need any parenthesis.

13

main = putStrLn "Hello, World!"

putStrLn "Hello, World!"
(putStrLn "Hello, World!")
putStrLn("Hello, World!")

• The same meaning: "Hello, World!" applied to "putStrLn" function

Combining two actions
• Write "Hello, World!" and "Hello, SFC!" in two lines.

14

main = putStrLn "Hello, World!" "Hello, SFC!"

main = (putStrLn "Hello, World!") "Hello, SFC!"

• does not work
main = putStrLn "Hello, World!"

putStrLn "Hello, SFC!"

• does not work

main = (putStrLn "Hello, World!") >> (putStrLn "Hello, SFC!")

• does work
main = do putStrLn "Hello, World!"

putStrLn "Hello, SFC!"

• does work

means

do syntax
• Input a name and output a message.

15

main = do putStrLn "What is your name?"
name <- getLine
putStrLn ("Hello, " ++ name ++ "!")

• getLine
• an action for getting a line from the standard input (i.e. terminal).

• name <- getLine
• not assignment statement
• If the action (getLine) is successful, the value is bound to name

• ++
• binary operator
• concatenate two strings

Align actions you want to combine

Exercise 1-1
• Write a Haskell program friend.hs to ask two names and

output a message saying they are friends.

16

% stack runghc friend.hs
Input a name?
Taro
Input another name?
Hanako
Taro and Hanako are friends.

user input

• Please submit only a .hs file (not executable one)

• Deadline of submitting homework is Saturday of the same
week.

• This course will be evaluated by submission of exercises.
• Attendance is of course important by default.

	Functional Programming�No.1　Introduction to Haskell
	Lecture Slide System
	Functional Programming
	Model of Computing
	Programming Language Haskell
	Haskell Brooks Curry
	Installing Haskell to Mac OS X
	Installing Haskell to Windows (1)
	Installing Haskell to Windows (2)
	Other OS
	Hello, World!
	Direct/Interactive Execution
	main action
	Combining two actions
	do syntax
	Exercise 1-1

