FUNCTIONAL PROGRAMMING
NO.1 INTRODUCTION TO HASKELL

Tatsuya Hagino
hagino@sfc.kelo.ac.Jp

lecture slide URL

https://vu5.sfc.kelo.ac.jp/slide/

Lecture Slide System

- Please access to:

https://vu5.sfc.kelo.ac.jp/slide/

- Select: Fundamentals of Logic

__— CNS Login Name

Login

Please enter CGMS login name and password:
CHNS IDgIn.|ONS login name // CNS Password

CNS password: |15 password “
Lecture:| Software Architecture (2018] | <— SeleCt LeCture
login

Functional Programming

- Procedural Programming
- write steps to solve the problem
- programs are executed line by line
- most popular way of programming
- ex. FORTRAN, C, Java, Javascript, ...

- Logic Programming
- write logical formulae (or rules) to solve the problem
- the order of rules does not matter
- no side effect
- No assignment
- ex. PROLOG

- Functional Programming
- combine functions to solve the problem
- order of evaluation does not matter
- no side effect
- No assignment
- eX. LISP, FP, ML, Haskell

Model of Computing

tape

- Turing Machine $15/2|@

- an infinite tape and a finite state automaton head

- Universal Turing Machine W
- Recursive Function

- primitive recursive function + mu operator

- f(x+1) = (x+1) X f(x), f(0) = 1 lambda calculus

@ untyped lambda calculus

- Lambda Calculus L'SP

- function abstraction + function application @ pred lambda caleulus

- (MC(AYxy))(Ax.x) = (Ay.(Ax.X)y) — Ay.y monad
@ 74

Haskell

Programming Language Haskell

- Pure functional programming language
- no side effect
- referential transparency

- Strong typing
- type checked before compilation

- Polymorphism
- Functions may be applied to multiple type values.

- Non-strict
- lazy evaluation

- Monad
- order evaluation

R
Haskell Brooks Curry

- American mathematician and logician
(1900/9/12 - 1982/9/1)

- combinatory logic
- S, K, I
- equivalent to lambda calculus

- Curry's Paradox
- If this sentence is true, then Japan is in Europe.

- Curry-Howard correspondence
- logic & computation
- proof as program

- Currying
- (AXB—->C)—->(A— (B —Q))

Installing Haskell to Mac OS X

- Start Terminal application (in /Applications/Utilities folder)

- Use FinderE or LaunchPadu‘.

% brew install stack
(message output)

% rehash < If necessary (stack command not found)

% stack setup
(message output)

% stack path
(message output)

/ Test the installation
% stack ghci

GHCi1, version 8.8.4: http://www.Haskell.org/ghc/ :? for help
Prelude> -quit

Leaving GHCi

%

Installing Haskell to Windows (1)

- Google 'Haskell Tool Stack'’
- https://docs.haskellstack.org/en/stable/README/

B Home - The Haskell To. %

B O R

The Haskell Tool Stack

Stack is a cross-platform program for developing Haskell projects. It is aimed at
Haskellers both new and experienced.

Home
The Haskell Tool Stack It features:
How to install
* |nstalling GHC automatically, in an
How to upgrade

isolated location.
Quick Start Guide

.
5
@
n
L
5

m

-
]
il
=
]

m
m
n
3
E
m
a
-
(=]
=

-
]
&
=

Eif

How to contribute project.

Building your project.
Testing your project,
Benchmarking your project.

Complete guide to stack

Questions, Feedback, Discussion

Why Stack?
How to uninstall How to install
Stack can be installed on most Unix-like (Un*x) operating systems, including macOS, \e(
and on Windows. 6\6\
o« \ O
For most Un*x operating systems, the easiest way toinstall is to run: \O’ad b\\-
o

curl -sSL https://get,haskellstack.org/ | sh OON
. “‘ “
or: N\
wget -q0- https://get.haskellstack.org/ | sh

On Windows, you can download and install the Windows é4-bit Installer.

For other operating systems and direct downloads, check out the install an“

) GitHub upgrade guide.

@ stack-23.3-windo..exe ~ Shaw all X

Installing Haskell to Windows (2)

I n Stal | th e StaC k by u Si n g B(Algrgg?;tbﬂ?ciz?gggit[gs:;ti:?gt?gl:lt.).;l\(l)%ﬂgghts reserved,
th e i n Stal I er %::Uéllegts’fgﬁiiET;EQEW_I:I;;ZZ: cImCompi lation System, version 7,10.2
Start Command Prompt

C:¥Users¥hagino>

C:Users¥hagino>stack setup

C:Users¥hagino>stack path
/ Test the installation
C:Users¥hagino>stack ghci
quit

C:Users¥hagino>

Other OS

- https://haskell.org/platform/

Fﬂ 17V = N 7 Y 7 <Y R B 17 N W A T 1)

% Download Haskell Platform X ‘ +

« > C o © & nttpsy//wwwhaskell.ore [F 1 s0% - & n o e &

»=Haskell Downloads Commumity Documentation News

Haskell Platform A multi-0S distribution

wp and running guickdy, making it ensy ta focus on uming

Haskell with batteries included

For developing projects
et for prafiling and code coverage analysis
core & widely-used

of the Platiorm are also available.

.
Let's get started

Mote: Usars who wish to make use.of chack and want to ensure they ars running the latest version may want to consider running “stack upgrade” and snsuring the propsr
path for stack-installed hinaries is in their environment.

Vi Bppesr ta b using Mol Windove Sos balow for cthar sparsting systemz.

=
Windows

—
e

Other Operating Systems

X
Mac OS X

The recam; y &0 install the comp: fthe mac alatiorm
s using gheup to install ghe and cabakinstsl], and following the
instructions ot hagkelistack org to install seack

Hello, World!

- Write the first Haskell program.
1. Write the following line as "hello.hs".

main = putStrLn "Hello, World!"

2. Compile it using "stack ghc" command.

% stack ghc hello.hs
[1 of 1] Compiling Main (hello.hs, hello.o)
Linking hello ...

3. Execute the compiled program.
Windows

% hello C:¥> hello.exe
Hello, World! Hello, World!

Direct/Interactive Execution

- Direct execution
- Execute programs without compiling
- use "stack runghc" command

% stack runghc hello.hs
Hello, World!

- Use Iinteractively by "stack ghci" command.

% stack ghci

GHCi, version 8.10.1: http://www.haskell.org/ghc/ :? for help
Prelude> 1 + 2

3

Prelude> putStrLn "Hello, World!"

Hello, World!

Prelude> :-quit

main action

main = putStrLn "‘Hello, World!"

- This Is the definition of variable "main".
- The value of "main" is not a function, but an action.
- "putStrLn" is a function.

- "putStrLn" takes a string literal "Hello, World!".
- "putStrLn" returns an action which outputs the given string.

- When a Haskell program is executed, the main action is
evaluated (i.e. executed).

- Function application may not need any parenthesis.

putStrLn "Hello, World!"
(putStrLn "Hello, World!')
putStrLn('Hello, World!™)

- The same meaning: "Hello, World!" applied to "putStrLn" function

Combining two actions
- Write "Hello, World!" and "Hello, SFC!" in two lines.

main = putStrLn "Hello, World!" ""Hello, SFC!"

< > means

main = (putStrLn ""Hello, World!'") "Hello, SFC!"
- does not work

main = putStrLn "Hello, World!"
putStrLn ""Hello, SFC!™

- does not work

main = (putStrLn "Hello, World!") >> (putStrLn "Hello, SFCI')

- does work

main = do putStrLn "Hello, World!"
putStrLn "Hello, SFC!"

- does work

do syntax

- Input a name and output a message.

main = do|putStrLn "What is your name?"
name <- getLine
putStrLn ("'Hello, "™ ++ name ++ "I

Align actions you want to combine

- getLine
- an action for getting a line from the standard input (i.e. terminal).

- hame <- getLine
- not assignment statement
- If the action (getLine) is successful, the value is bound to name

o ++

- binary operator
- concatenate two strings

Exercise 1-1

- Write a Haskell program friend.hs to ask two names and
output a message saying they are friends.

% stack runghc friend.hs

Input a name*: _
Taro L user input
Input another name?

Hanako

Taro and Hanako are friends.

- Please submit only a .hs file (not executable one)

- Deadline of submitting homework is Saturday of the same
week.

- This course will be evaluated by submission of exercises.
- Attendance is of course important by default.

	Functional Programming�No.1　Introduction to Haskell
	Lecture Slide System
	Functional Programming
	Model of Computing
	Programming Language Haskell
	Haskell Brooks Curry
	Installing Haskell to Mac OS X
	Installing Haskell to Windows (1)
	Installing Haskell to Windows (2)
	Other OS
	Hello, World!
	Direct/Interactive Execution
	main action
	Combining two actions
	do syntax
	Exercise 1-1

