
FUNCTIONAL PROGRAMMING
NO.2 FUNCTION AND LIST
Tatsuya Hagino
hagino@sfc.keio.ac.jp

1

https://vu5.sfc.keio.ac.jp/slide/
lecture slide URL

Program Development Environment
• CUI vs GUI Program Development Environment

• CUI (Character User Interface) or CLI (Command Line Interface)
• simple and light weight
• compiler and library only
• use text editor to write codes

• GUI (Graphical User Interface)
• modern but heavy
• editor, compiler, debugger, and other tools are integrated
• ex. eclipse, Xcode, Visual Studio

• CUI
• UNIX (Linux): shell (sh, csh, tcsh, bash)
• Mac OS X: Terminal
• Windows: command prompt

• Text Editor
• UNIX (Linux): vi (vim), emacs
• Mac OS X: TextEdit, mi, emacs
• Windows: notepad, xyzzy

2

UNIX Basic Commands
• CUI Basic

• type command to execute
• give command name and arguments
• correctly set the current working directory
• folder = directory

• Basic commands for shell (UNIX or Mac OS X)
• Mac OS X is based on UNIX.
• cygwin may be installed for Windows.

3

command meaning

pwd Print current working directory

cd dir Change directory to dir

ls dir List files in dir

ls -l dir List files in dir with information

cat file Show the content of file

more file Show the content of file page by page

mkdir dir Create a new directory dir

rmdir dir Delete directory dir

rm file Delete (remove) file

command < file command takes input from file

command > file command outputs the result to file

% command arg1 arg2 arg3

prompt
arguments

no undelete
deleted file cannot be recovered

Show the content of a file
• Write a Haskell program similar to unix cat command

• It outputs the content of a given file.

4

main = do cs <- getContents
putStr cs

cat.hs

% stack ghc cat.hs
...
% ./cat < cat.hs
main = do cs <- getContents

putStr cs
%

• "./" is the current directory
• "./cat" is the "cat" program in the current directory
• For windows, replace "/" with "¥"

cat Program
• getContents

• It is an action.
• When this action is evaluated, the standard input is read.
• It returns a string of the whole standard input.

• putStr cs
• Returns an action which outputs the string cs to the standard output.

• do expression
• Multiple actions are evaluated one line by one line from top to bottom
• If one the action fails, stops
• cs <- getContents

• The evaluation result of action getContents is bound to variable cs
• cs can be used in the following lines

5

main = do cs <- getContents
putStr cs

Layout syntax
• lines with same indent are grouped
• block structure
• { and } are not necessary

Lazy Evaluation

• getContents does not read the standard input at once
• cs is a string which represents the standard input
• The actual content of cs is read from the standard input when it is

referred.
• putStr accesses the content of cs, and triggers the real read

from the standard input
• The amount putStr wants is read.
• From the terminal, only one line is read at once.

6

main = do cs <- getContents
putStr cs

cat.hs

lazy evaluation eager evaluation

Evaluate later when it is required
Try not to evaluate

Evaluate first
Evaluate everything

List

• Connecting multiple values
• Process from the head to the tail
• The last value is 'empty list'.

• Similar to NULL pointer in C

• A list can hold the same kind of values.
• No mixing different type values (i.e. integer and character)

• Cannot change the value
• Not like array in C

7

value value value empty
list

order of processinghead tail

List Literal
• [1, 2, 3]

• List of number 1，2 and 3

• ["aa", "bb", "cc"]
• List of three strings

• ['a', 'b', 'c']
• List of three characters
• Same as "abc"

• Only one kind (i.e. type) of data in a same list
• [1, 'c', "string"] is wrong
• [1, [2, [3]]] is wrong

• []
• empty list

8

Count the number of lines in a file

• Try the above program.

9

main = do cs <- getContents
print $ length $ lines cs

countline.hs

% stack ghc countline.hs
...
% ./countline < countline.hs
2
%

countline details

• '$' operator
• Binary operator like '+' and '*'
• 'x $ y' means 'x(y)'
• 'length $ lines cs' is 'length(lines cs)'
• 'print $ length $ lines cs' is

• print(length(lines cs))

• 'print length lines cs' is
• (((print length) lines) cs)

10

main = do cs <- getContents
print $ length $ lines cs

countline.hs

countline details (continue)
• 'lines' function

• Divide the string by lines
• lines "aaa∖nbbb∖nccc∖n" → ["aaa", "bbb", "ccc"]
• lines "aaa∖n" → ["aaa"]
• lines "aaa" → ["aaa"]
• lines "∖n" → [""]
• lines "" → []

• 'length' function
• Returns the number of elements of the list
• length [1, 2, 3, 4] → 4
• length [5, 11] → 2
• length [] → 0
• length ["aa", "bb"] → 2
• length ["aa"] → 1
• length [""] → 1
• length "string" → 6
• length "str" → 3
• length "" → 0

• 'print' function
• Returns an action to output the value
• The value is serialized to a string.

11

USA-states.txt
• USA state names, their abbreviation and their capitals

• See http://en.wikipedia.org/wiki/List_of_states_and_territories_of_the_United_States

12

AK Alaska Juneau
AL Alabama Montgomery
AR Arkansas Little Rock
AZ Arizona Phoenix
CA California Sacramento
CO Colorado Denver
...
WV West Virginia Charleston
WY Wyoming Cheyenne

USA-states.txt

• Items are separated by tabs.
• Available from

https://web.sfc.keio.ac.jp/~hagino/fp20/USA-states.txt

tab

Show the first 10 lines of the file

• Try the above program.

13

main = do cs <- getContents
putStr $ firstNLines 10 cs

firstNLines n cs = unlines $ take n $ lines cs

head.hs

% stack ghc head.hs
...
% ./head < USA-states.txt
AK Alaska Juneau
AL Alabama Montgomery
AR Arkansas Little Rock
AZ Arizona Phoenix
CA California Sacramento
CO Colorado Denver
CT Connecticut Hartford
DE Delaware Dover
FL Florida Tallahassee
GA Georgia Atlanta

Application of arguments to a function

• Applying an argument to a function
• func arg

• With two arguments
• func arg1 arg2

• With three arguments
• func arg1 arg2 arg3

• Parenthesizes are not necessary
• func arg1 arg2 → ((func arg1) arg2)
• func arg1 arg2 args → (((func arg1) arg2) arg3)

14

func arg1 arg2 func（arg1, arg2）

func arg1 arg2 ‥‥

Defining a function

• firstNLines n cs = unlines $ take n $ lines cs

• Defining 'firstNLines'
• 'firstNLines' takes two parameters 'n' and 'cs'
• The parameters can be referred in the body
• Its body is 'unlines $ take n $ lines cs'

15

func param1 param2 ‥‥ = body

'unlines' and 'take'
• 'unlines' function

• Reverse of 'lines' function.
• Concatinate strings in a list.
• unlines ["aaa", "bbb", "ccc"] → "aaa∖nbbb∖nccc∖n"
• unlines ["aaa"] → "aaa∖n"
• unlines [""] → "∖n"
• unlines [] → ""
• unlines ["aaa∖n"] → ["aaa∖n∖n"]

• 'take n' function
• Returns a list consists of first n elements from the list.
• If the length of the list is less than n, returns the list itself.
• take 3 [5, 2, 4, 6, 8] → [5, 2, 4]
• take 3 [5] → [5]
• take 3 [] → []
• take 3 "string" → "str"
• take 0 [1, 2, 3] → []

16

Exercise 2-1

• Rewrite the above program without using '$'.

17

main = do cs <- getContents
putStr $ firstNLines 10 cs

firstNLines n cs = unlines $ take n $ lines cs

head.hs

Note

You can only use functions or techniques taught in this course.
Please do not copy programs on the internet.

'reverse' and 'words'
• 'reverse' function

• Reverse the list.
• reverse [1, 2, 3] → [3, 2, 1]
• reverse [] → []
• reverse "string" → "gnirts"
• reverse "" → ""
• reverse ["abc", "def", "ghi"]

→ ["ghi", "def", "abc"]

• 'words' function
• Divide the string into a list of words.
• Blanks (including tabs and carriage returns) are separators.
• words "This is a pen." → ["This", "is", "a", "pen."]
• words " a(1, 2, 3) " → ["a(1,", "2,", "3)"]
• words "a∖nb∖nc∖n" → ["a", "b", "c"]
• words "" → []

18

Exercise 2-2

• Complete the above program which reverse the lines in a file.

19

main = do cs <- getContents
putStr $ reverseLines cs

reverseLines cs = ...

reverse.hs

% stack ghc reverse.hs
...
% ./reverse < USA-states.txt
WY Wyoming Cheyenne
WV West Virginia Charleston
WI Wisconsin Madison
WA Washington Olympia
VT Vermont Montpelier
...
AK Alaska Juneau

Exercise 2-3

• Complete the above program which outputs the last 10 lines of the file.

20

main = do cs <- getContents
putStr $ lastNLines 10 cs

lastNLines n cs = unlines $ takeLast n $ lines cs

takeLast n ss = ...

tail.hs

% stack ghc tail.hs
...
% ./tail < USA-states.txt
SD South Dakota Pierre
TN Tennessee Nashville
TX Texas Austin
UT Utah Salt Lake City
VA Virginia Richmond
VT Vermont Montpelier
WA Washington Olympia
WI Wisconsin Madison
WV West Virginia Charleston
WY Wyoming Cheyenne

Exercise 2-4 and 2-5

• Count the number of bytes in a file.

21

main = do cs <- getContents
print ...

countbyte.hs

main = do cs <- getContents
print ...

countword.hs

• Count the number of words in a file.

Exercise 2-6

• Show the first 5 lines followed by “...” and the last 5 lines.
• Use ‘++’ to concatenate two lists together.

22

main = do cs <- getContents
putStr $...

abbr.hs

% stack ghc abbr.hs
...
% ./abbr < USA-states.txt
AK Alaska Juneau
AL Alabama Montgomery
AR Arkansas Little Rock
AZ Arizona Phoenix
CA California Sacramento
...
VA Virginia Richmond
VT Vermont Montpelier
WA Washington Olympia
WI Wisconsin Madison
WV West Virginia Charleston
WY Wyoming Cheyenne

Summary of functions and actions
23

function example description
putStr putStr cs Returns an action of outputting sting cs

putStrLn putStrLn cs Returns an action of outputting string cs and a
carriage return

print print x Returns an action of outputting value x

length length xs Returns the length of list xs

take take n xs Returns the first n elements from list xs

reverse reverse xs Returns the reverse of list xs

lines lines cs Divides string cs into the list of lines

unlines unlines xs Concatenates strings in list xs by adding carriage
returns

words words cs Divides string cs into the list of words

action example description
getContents getContents An action of reading the standard input

	Functional Programming�No.2　Function and List
	Program Development Environment
	UNIX Basic Commands
	Show the content of a file
	cat Program
	Lazy Evaluation
	List
	List Literal
	Count the number of lines in a file
	countline details
	countline details (continue)
	USA-states.txt
	Show the first 10 lines of the file
	Application of arguments to a function
	Defining a function
	'unlines' and 'take'
	Exercise 2-1
	'reverse' and 'words'
	Exercise 2-2
	Exercise 2-3
	Exercise 2-4 and 2-5
	Exercise 2-6
	Summary of functions and actions

