
FUNCTIONAL PROGRAMMING
NO.4 MODULES
Tatsuya Hagino
hagino@sfc.keio.ac.jp

1

https://vu5.sfc.keio.ac.jp/slide/
lecture slide URL



Modules
• Haskell programs are divided into modules.

• Each module consists of:
• functions
• variables
• types

• Importing modules
• Before using modules, you need to import them.

2

import Module



echo command

• This command outputs its command arguments to the 
standard output.

3

import System.Environment

main = do args <- getArgs
putStr $ unwords args

echo.hs

% stack ghc echo.hs
...
% ./echo a b c
a b c
% ./echo This    is    a   pen.
This is a pen.
% ./echo "This    is    a    pen."
This    is    a    pen.
%



Main and Prelude Modules
• Main module

• main variable belongs to Main module.
• If you do not specify a module, everything you write belongs to 

Main module.

• Prelude module
• Defines basic types, functions and variables.
• It is implicitly imported by the system.
• getContents, lines, unlines, ... are defined in Prelude module.

4



unwords function

• Concatenates strings in the list by adding spaces in 
between.
• unwords ["a", "b", "c"] → "a b c"
• unwords ["a(1,", "2,", "3)"] → "a(1, 2, 3)"
• unwords ["This", "is", "a", "pen."]

→ "This is a pen."
• unwords ["a∖n", "b"] → "a∖n b"
• unwords [] → ""

5

unwords:: [String] -> String



System.Environment actions

• An action to read given command arguments.
• If the action is successfully executed, the result is a string 

list.

6

getArgs:: IO [String]

getProgName:: IO String

• An action to read the program name.
• If the action is successfully executed, the result is a string.



Exercise 4-1
• Write sum.hs which adds numbers given as command arguments.

7

import System.Environment

main = do args <- getArgs
print $ .... args

sum.hs

% stack ghc sum.hs
...
% ./sum 1 5 3
9
% ./sum 123 248
371
%

• In order to convert a string to a number, use read function.
• (read "123")::Int
• read return type is polymorphic, so that a type needs to be specified.



fgrep command
• fgrep outputs the lines which contain a given string.

• Outputs lines in USA-states.txt which contains ar.

8

% ./fgrep ar < USA-states.txt
CT      Connecticut     Hartford
DE      Delaware        Dover
MD      Maryland        Annapolis
NC      North Carolina  Raleigh
ND      North Dakota    Bismarck
NV      Nevada  Carson City
PA      Pennsylvania    Harrisburg
SC      South Carolina  Columbia
WV      West Virginia   Charleston
%



fgrep command
9

import System.Environment
import Data.List

main = do args <- getArgs
cs <- getContents
putStr $ fgrep (head args) cs

fgrep :: String -> String -> String
fgrep pattern cs = unlines $ filter match $ lines cs
where
match :: String -> Bool
match line = any prefixp $ tails line

prefixp :: String -> Bool
prefixp line = pattern `isPrefixOf` line

fgrep.hs



main action and fgrep function

• main action
• getArgs reads the command argument and binds it args
• Reads the standard input and binds to cs
• head takes the first element of args
• The first element and cs are passed to fgrep
• Outputs the result

• fgrep function
• lines divides the whole file into lines.
• unlines put them back.
• filter is a higher-order function to select elements from a list which satisfies a 

condition.

10

main = do args <- getArgs
cs <- getContents
putStr $ fgrep (head args) cs

fgrep :: String -> String -> String
fgrep pattern cs = unlines $ filter match $ lines cs
where
...



head, tail and filter functions
• head function

• head :: [a] -> a
• Returns the first element of the list
• head [1, 2, 3] → 1
• head [2, 3] → 2
• head [3] → 3
• head [] → run time error

• tail function
• tail :: [a] -> [a]
• Removes the first element of the list
• tail [1, 2, 3] → [2, 3]
• tail [2, 3] → [3]
• tail [3] → []
• tail [] → run time error

• filter function
• filter :: (a -> Bool) -> [a] -> [a]
• filter f xs collects element x in xs which make f x True
• filter odd [1, 2, 3, 4, 5] → [1, 3, 5]
• filter odd [2, 4, 6, 8, 10] → []
• filter odd [] → []
• where odd n return True if n is an odd number

11



where clause

• where clause allows to define functions which can be used in the 
expression (defining local functions)

• expression can use functions define in definition1, definition2 and definition3

• match and prefixp functions are defined.
• match and prefixp can only be used inside fgrep.
• match and prefixp can use variables of fgrep.

12

fgrep :: String -> String -> String
fgrep pattern cs = unlines $ filter match $ lines cs
where
match :: String -> Bool
match line = any prefixp $ tails line

prefixp :: String -> Bool
prefixp line = pattern `isPrefixOf` line

expression where definition1
definition2
definition3



match function

• match line
• Checks whether line (e.g."abcd") contains pattern (e.g."bc") or 

not.
• match "abcd"

• tails creates a list of strings by shortening line one character by 
one character.
• tails "abcd" → ["abcd", "bcd", "cd", "d", ""]

• any checks whether there is a string which satisfies prefixp
• prefixp checks whether it starts with pattern

• prefixp "abcd" → "bc" `isPrefixOf` "abcd" → False
• prefixp "bcd" → "bc" `isPrefixOf` "bcd" → True
• prefixp "cd" → "bc" `isPrefixOf` "cd" → False

13

match :: String -> Bool
match line = any prefixp $ tails line

prefixp :: String -> Bool
prefixp line = pattern `isPrefixOf` line



any and all functions
• any function

• any :: (a -> Bool) -> [a] -> Bool
• any f xs applies f to each element of xs，and if one of it is True, then it 

returns True.  If all the elements return False, it also returns False.
• any odd [1, 2, 3, 4, 5] → True
• any odd [1, 3, 5] → True
• any odd [2, 4, 6] → False
• any odd [3] → True
• any odd [] → False

• all function
• all :: (a -> Bool) -> [a] -> Bool
• all f xs applies f to each element of xs，and if all of them are True, then 

it returns True.  If an any element elements return False, it also returns 
False.

• all odd [1, 2, 3, 4, 5] → False
• all odd [1, 3, 5] → True
• all odd [2, 4, 6] → False
• all odd [3] → True
• all odd [] → True

14



tails and isPrefixOf functions
• Data.List.tails function

• tails :: [a] -> [[a]]
• tails xs returns a list consits of xs itself，xs taking out the first 

element，xs taking out the first two elements, ...
• tails [1, 2, 3] → [[1, 2, 3], [2, 3], [3], []]
• tails [1, 2] → [[1, 2], [2], []]

• Data.List.isPrefixOf function
• isPrefixOf :: (Eq a) => [a] -> [a] -> Bool
• isPrefixOf xs ys is True if xs matches the first part of ys
• xs `isPrefixOf` ys is same as  isPrefixOf xs ys

• makes a function a binary operator

15



Exercise 4-2

• fgrep.hs distinguishes upper and lower letters.  Write fgrepi.hs
which does not distinguish.
• For example, Arasuka can be selected when aR is given.
• In order to convert upper letters to lower ones, use function lower 

which is defined in Exercise 3-2.

16

import System.Environment
import Data.List

main = ...

fgrepi :: String -> String -> String
fgrepi pattern cs = unlines $ filter match $ lines cs

where
...

fgrepi.hs

lower :: Char -> Char
lower 'A' = 'a'
lower 'B' = 'b'
...
lower 'Z' = 'z'
lower c = c

% ./fgrepi aR < USA-states.txt
AR      Arkansas        Little Rock
AZ      Arizona Phoenuix
CT      Connecticut     Hartford
DE      Delaware        Dover
...
%



Exercise 4-3

• Write program uniq.hs which removes duplicate lines (i.e. the 
same line as the previous line).
• Only use functions which we studied in the class.

17

main = do cs <- getContents
putStr $ unlines $ uniq $ lines cs

uniq :: [String] -> [String]
uniq [] = []
uniq ...

uniq.hs

% stack ghc uniq.hs
...
% ./uniq
ABCD
ABCD
EFG
XXX
ABCD
XXX
XXX
^D

ABCD
EFG
XXX
ABCD
XXXoutput



Exercise 4-4

• Write program uniq2.hs which removes duplicate lines 
which have already appeared before.

18

main = do cs <- getContents
putStr $ unlines $ uniq $ lines cs

uniq :: [String] -> [String]
uniq [] = []
uniq ...

uniq2.hs

% stack ghc uniq2.hs
...
% ./uniq2
ABCD
ABCD
EFG
XXX
ABCD
XXX
XXX
^D

ABCD
EFG
XXX

output



Summary of Functions and Actions
19

Function Example Meaning

unwords unwords xs Concatenates the strings by adding speaces
sum sum xs Add numbers in the list
read (read s)::Int Convert string to an integer
any any f xs Checks whether there is an element x which makes f 

x True

all all f xs Checks whether all the elements x makes f x True

filter filter f xs Selects elements from xs which makes f x True

head head xs Returns the head element of xs
tail tail xs Removes the head element of xs
Data.List.tails tails xs [xs, (tail xs), (tail(tail xs)), ...]

Data.List.isPrefixOf xs `isPrefixOf` ys Checkes whether xs is the head part of ys

Action Meaning

System.Environment.getArgs Reads command line arguments and the
result is a string list

System.Environment.getProgName Reads the command name and the result is a 
string


	Functional Programming�No.4　Modules
	Modules
	echo command
	Main and Prelude Modules
	unwords function
	System.Environment actions
	Exercise 4-1
	fgrep command
	fgrep command
	main action and fgrep function
	head, tail and filter functions
	where clause
	match function
	any and all functions
	tails and isPrefixOf functions
	Exercise 4-2
	Exercise 4-3
	Exercise 4-4
	Summary of Functions and Actions

