FUNCTIONAL PROGRAMMING
NO.4 MODULES

Tatsuya Hagino
hagino@sfc.kelo.ac.Jp

lecture slide URL

https://vu5.sfc.kelo.ac.jp/slide/

Modules

- Haskell programs are divided into modules.

- Each module consists of:
- functions
- variables
- types

- Importing modules
- Before using modules, you need to import them.

import Module

echo command

echo.hs

import System.Environment

main = do args <- getArgs
putStr $ unwords args

- This command outputs its command arguments to the
standard output.

% stack ghc echo.hs

% ./echo a b c

abc

% ./echo This IS a pen.
This 1s a pen.

% ./echo "This iIs a pen."

This IS a pen.
%

Main and Prelude Modules

- Main module
- main variable belongs to Main module.

- If you do not specify a module, everything you write belongs to
Main module.

- Prelude module
- Defines basic types, functions and variables.
- It is implicitly imported by the system.
- getContents, lines, unlines, ... are defined in Prelude module.

unwords function

unwords:: [String] -> String

- Concatenates strings in the list by adding spaces in
between.
- unwords ["a", "b", 'c'"]—"a b c"
- unwords ["a(1,', "2,", "3)"] ->"a(l, 2, 3)"
- unwords ["This", "i1s', "a', "pen."]
— "This 1s a pen."
- unwords ["a\n", "'b'"] — "a\n b"
- unwords [] —""

5
System.Environment actions

getArgs:: 10 [String]

- An action to read given command arguments.

- If the action is successfully executed, the result is a string
list.

getProgName:: 10 String

- An action to read the program name.
- If the action is successfully executed, the result is a string.

Exercise 4-1

- Write sum. hs which adds numbers given as command arguments.

sum.hs

import System.Environment

main = do args <- getArgs
print $ args

- In order to convert a string to a number, use read function.
- (read "123")::Int
- read return type is polymorphic, so that a type needs to be specified.

% stack ghc sum.hs

% ./sum 1 5 3

9

% ./sum 123 248
371

%

. R
fgrep command

- fgrep outputs the lines which contain a given string.
- Outputs lines in USA-states.txt which contains ar.

% ./fgrep ar < USA-states.txt

CT Connecticut Hartford
DE Delaware Dover

MD Maryland Annapolis
NC North Carolina Raleigh

ND North Dakota Bismarck
NV Nevada Carson City

PA Pennsylvania Harrisburg
SC South Carolina Columbia
WV West Virginia Charleston
%

.
fgrep command

fgrep.hs

import System.Environment
import Data.List

main = do args <- getArgs
cs <- getContents
putStr $ fgrep (head args) cs

fgrep :: String -> String -> String
fgrep pattern cs = unlines $ filter match $ lines cs
where
match :: String -> Bool
match line = any prefixp $ tails line

prefixp :: String -> Bool
prefixp line = pattern " isPrefixOf line

main action and fgrep function

main = do args <- getArgs
cs <- getContents
putStr $ fgrep (head args) cs

fgrep :-: String -> String -> String
fgrep pattern cs = unlines $ filter match $ lines cs
where

- maln action
- getArgs reads the command argument and binds it args
Reads the standard input and binds to cs
head takes the first element of args
The first element and cs are passed to fgrep
Outputs the result
- fgrep function
- I1nes divides the whole file into lines.
- unl1nes put them back.

- Filter is a higher-order function to select elements from a list which satisfies a
condition,

head, taill and filter functions

- head function
- head :: [a] -> a
- Returns the first element of the list
« head [1, 2, 3] - 1
« head [2, 3] — 2
« head [3] — 3
- head [] — runtime error

- tarl function
- tail :: [a] -> [a]
- Removes the first element of the list
- tail [1, 2, 3] — [2, 3]
- tail [2, 3] — [3]
- tail [3] — []
- tail [] — runtime error

- Fi1lter function
- filter :: (a -> Bool) -> [a] -> [a]
- Filter T Xxscollects element x in Xs which make ¥ x True
- filter odd [1, 2, 3, 4, 5] — [1, 3, 5]
- filter odd [2, 4, 6, 8, 10] — []
- filter odd [] — T[]
- where odd n return True if n is an odd number

where clause

fgrep :: String -> String -> String
fgrep pattern cs = unlines $ filter match $ lines cs
where
match :-: String -> Bool
match line = any prefixp $ tails line

prefixp :: String -> Bool
prefixp line = pattern " i1sPrefixOf line

- where clause allows to define functions which can be used in the
expression (defining local functions)

expression where definition,
definition,
definition,

- expression can use functions define in definition,, definition, and definition,

- match and prefixp functions are defined.
- match and prefixp can only be used inside fgrep.
- match and prefixp can use variables of fgrep.

maitch function

match :: String -> Bool
match line = any prefixp $ tails line

prefixp :: String -> Bool
prefixp line = pattern " isPrefixOf line

- match line

- Checks whether I'ine (e.g.""abcd'") contains pattern (e.g."'bc') or
not.
- match "abcd"
- tai ls creates a list of strings by shortening 11ne one character by
one character.
- tails "abcd" — ["abcd™, "bcd", *cd™, "d", "]
- any checks whether there is a string which satisfies prefixp
- prefixp checks whether it starts with pattern
- prefixp "abcd™ — "bc' “i1sPrefixOf 'abcd" — False
- prefixp "bcd"” — "bc"™ "isPrefixOf" "bcd" — True
- prefixp "cd” — "bc" "isPrefixOf "cd" — False

any and all functions

- any function
-any :: (a -> Bool) -> [a] -> Bool
- any T xs applies f to each element of xs, and if one of itis True, then it
returns True. If all the elements return False, it also returns False.
- any odd [1, 2, 3, 4, 5] — True
- any odd [1, 3, 5] — True
- any odd [2, 4, 6] — False
- any odd [3] — True
- any odd [] — False

- all function
-all :: (a -> Bool) -> [a] -> Bool
- all T xs applies T to each element of xs, and if all of them are True, then

it returns True. If an any element elements return False, it also returns
False.

- all odd [1, 2, 3, 4, 5] — False
- all odd [1, 3, 5] — True

- all odd [2, 4, 6] — False

- all odd [3] — True

- all odd [] — True

talls and 1sPrefixOf functions

- Data.List.tainls function
- tails :©: [a] -> [[al]l

- tails Xxs returns a list consits of xs itself, xs taking out the first
element, xs taking out the first two elements, ...

- tails [1, 2, 31 — [I[1, 2, 31, [2, 31. [31. [11
- tails [1, 2] — [I1, 2], [2]. [1]

- Data.List. 1sPrefixOf function
- ISPrefixOf :: (Eq a) => [a] -> [a] -> Bool
- ISPrefixOf xs ysis True if xs matches the first part of ys

- XS I1SPrefixOf" ys issame as 1sPrefixOf xs ys
- makes a function a binary operator

Exercise 4-2

fgrepi.hs
import System.Environment
import Data.List

main = ...

fgrepit :: String -> String -> String
fgrepi pattern cs = unlines $ filter match $ lines cs
where

- fgrep.hs distinguishes upper and lower letters. Write fgrepi.hs
which does not distinguish.
- For example, Arasuka can be selected when aR is given.

- In order to convert upper letters to lower ones, use function lower
which is defined in Exercise 3-2.

lower -:- Char -> Char % ./fgrepi aR < USA-states.txt

lowver "A" = "a" AR Arkansas Little Rock
..... AZ Arizona Phoenuix

lower "B = "D CT Connecticut Hartford

--- DE Delaware Dover

lower "Z° = *"z* .

lower c = c %

Exercise 4-3

uniqg.hs

main = do cs <- getContents
putStr $ unlines $ uniq $ lines cs

uniq :-: [String] -> [String]
uniq [1 = [1

uniq - ..

- Write program unig.hs which removes duplicate lines (i.e. the
same line as the previous line).

- Only use functions which we studied in the class.

% stack ghc uniq.hs

% ./uniq

ABCD

oy :> 0
XXX

XXX output XXX
XXX

~D

Exercise 4-4

unig2.hs

main = do cs <- getContents
putStr $ unlines $ uniq $ lines cs

uniq :-: [String] -> [String]
uniq [1 = [1

uniq - ..

- Write program unig2.hs which removes duplicate lines
which have already appeared before.

% stack ghc uniqg2.hs

% ./uniq2
ABCD
ABCD

EFG ABCD
XXX [:::i> EFG

ABCD XXX

XXX output

XXX

~D

Summary of Functions and Actions

Function Example Meaning
unwords unwords Xs Concatenates the strings by adding speaces
sum sum XS Add numbers in the list
read (read s)::Int Convert string to an integer
any any T xs Checks whether there is an element x which makes f

X True

all all f xs Checks whether all the elements x makes ¥ X True
filter filter T xs Selects elements from xs which makes ¥ x True
head head xs Returns the head element of xs
tail tail xs Removes the head element of xs
Data.List.tails tails xs [xs, (tail xs), (tail(tail xs)), ...]
Data.List.isPrefixOf | xs "1sPrefixOf" ys | Checkes whether xs is the head part of ys

Action Meaning
System.Environment.getArgs Reads command line arguments and the
result is a string list
System.Environment.getProgName Reads the command name and the result is a
string

	Functional Programming�No.4　Modules
	Modules
	echo command
	Main and Prelude Modules
	unwords function
	System.Environment actions
	Exercise 4-1
	fgrep command
	fgrep command
	main action and fgrep function
	head, tail and filter functions
	where clause
	match function
	any and all functions
	tails and isPrefixOf functions
	Exercise 4-2
	Exercise 4-3
	Exercise 4-4
	Summary of Functions and Actions

