
FUNCTIONAL PROGRAMMING

NO.5 LAZY EVALUATION

Tatsuya Hagino

hagino@sfc.keio.ac.jp

1

https://vu5.sfc.keio.ac.jp/slide/

lecture slide URL

Evaluation in Haskell

• Evaluation

• Haskell evaluates the given expressions.

• equals to program execution in usual programming languages.

• Evaluation is to calculate the value according to the rule.

• Rewrite Model

• Evaluation is done by rewriting a function application by its definition.

2

square n = n * n

function name definition

square (1+3) (1+3)*(1+3)

rewrite with definition simplification

4*4

simplification

16

Innermost and Outermost simplification

• Innermost simplification

• Simplify inner expressions first

• Simplify function arguments first, then expand the definition

• Outermost simplification

• Simplify outer expressions first

• Expand the definition without simplifying arguments

3

square (1+3)

(1+3)*(1+3) 4*4 16

square 4 4*4 16

Outermost

Innermost

Outermost Simplification and Lazy Evaluation

• Haskell evaluates outermost expressions first

• Delays full evaluation

• lazy evaluation

• Example of lazy evaluation

4

length [(1+1),(2+2),(3+3)]

Outermost

Lazy Evaluation

3

length [2,4,6]

Innermost

Eager Evaluation

3

Example of Lazy Evaluation

5

myIf :: Bool -> a -> a -> a

myIf True t e = t

myIf False t e = e

f n = myIf (n==5) (1+2) (8/0)

f (4+1) myIf ((4+1)==5) (1+2) (8/0)

myIf (5==5) (1+2) (8/0) myIf True (1+2) (8/0)

(1+2) 3

Merit and Demerit of Lazy Evaluation

• Merit

• Reduce unnecessary computation

• Can handle infinite list

• ints n = n : (ints (n + 1))

• Give uniform interface

• Even if a program is written: tree structure → list → process

• List is not created as a whole

• List processing can uniformly handle processing general structure.

• List processing give the powerful tool.

• Demerit

• Evaluation order is difficult to control.

• Difficult to debug

• No stack trace like C

6

Exercise 5-1
• Write tarai function in Haskell and C, and compare the

execution time.

7

main = print (tarai 20 10 5)

tarai :: Int -> Int -> Int -> Int

tarai x y z = if x <= y then y

else tarai (tarai (x-1) y z)

(tarai (y-1) z x)

(tarai (z-1) x y)

tarai.hs

#include <stdio.h>

int tarai(int x, int y, int z) {

if (x <= y) return y;

else return tarai(tarai(x-1,y,z),tarai(y-1,z,x),tarai(z-1,x,y));

}

main() {

printf("%d∖n", tarai(20,10,5));
}

tarai.c

Exercise 5-2

• Create an infinite sequence 1,2,3,4,5,6,7,8,9,10,.....

• Print out first 20 elements of the sequence.

8

main = print $ take 20 $ ints 1

ints n = n:(ints(n+1))

ints.hs

• ints 1 can be written as [1..]

main = print $ take 20 [1..]

ints2.hs

Exercise 5-3

• Create an infinite sequence of odd numbers
• 1, 3, 5, 7, 9, 11,

• Print out first 20 elements of the sequence.

9

main = print $ take 20 $ odds 1

odds n =

odds.hs

• Write the same program by filtering odd numbers from the
infinite sequence [1..]

main = print $ take 20 $ filter ...

odds2.hs

Recursive Call
• Functional programming language do not have while or if

statements to loop. Instead, it uses recursive calls.

10

ints n = n:(ints(n+1))

recursive all of ints

• Recursive call

• Call a function itself directly or indirectly.

tarai :: Int -> Int -> Int -> Int

tarai x y z = if x <= y then y

else tarai (tarai (x-1) y z)

(tarai (y-1) z x)

(tarai (z-1) x y)

recursive all of tarai

Exercise 5-4

• The factorial of n is the result of multiplying numbers from 1 to n.
• 1! = 1

• 2! = 1×2

• 3! = 1×2×3

• 4! = 1×2×3×4

• 5! = 1×2×3×4×5

• The factorial can be defined recursively.
• 5! = 5×4!

• 4! = 4×3!

• Please complete the above program of calculating the factorial of a give number.

11

import System.Environment

main = do args <- getArgs

print $ fact $ read $ head args

fact 0 = 1

fact n = ...

fact.hs

Exercise 5-5

• Fibonacci sequence f0, f1, f2, f3, ... is

• f0 = 1

• f1 = 1

• fn = fn-1 + fn-2

• Print out the first 20 elements of the Fibonacci sequence.

12

main = print $ take 20 $ map fib [1..]

fib 0 = 1

fib 1 = 1

fib n =

fib.hs

• Try output first 100 elements and see what happens.

Exercise 5-6

• Output all the divisors of a given number.

13

import System.Environment

main = do args <- getArgs

print $ factors $ read $ head args

factors n = filter divisible [1..n]

where divisible m = ...

factor.hs

• To calculate the remainder:
• x `mod` y

% ./factor 144

[1,2,3,4,6,8,9,12,16,18,24,36,48,72,144]

Exercise 5-7

• p is a prime number when p is only divisible by 1 and p

itself (i.e. only two divisors).

• Print out the first 100 prime numbers.

14

main = print $ take 100 $ filter isprime [1..]

factors n = ...

isprime n = ...

prime.hs

% ./prime

[2,3,5,7,...,541]

Exercise 5-8
• There are prime numbers which are twins.

• 3 and 5 are prime numbers and the gap is 2.

• 5 and 7 are also twins.

• 7 and 11 are not, since the gap is 4.

• Print out the first 20 twin prime number pairs.

15

main = print $ take 20 $ twin $...

isprime n = ...

twin :: [Int] -> [(Int,Int)]

twin ...

twin.hs

% ./twin

[(3,5), (5,7), (11,13), (17,19),..., (311,313)]

• Pairs can be created by:

• (x, y)

