
FUNCTIONAL PROGRAMMING

NO.6 BASIC VALUES

Tatsuya Hagino

hagino@sfc.keio.ac.jp

1

https://vu5.sfc.keio.ac.jp/slide/

Slide URL

Basic Values and Types
• Haskell has the following basic values and types:

• Boolean values
• Bool

• Numerical values
• Int, Integer, Float, Double

• Character values
• Char

• Character string values
• String = [Char]

• Tuple values
• (a,b)

• Unit value
• ()

• List
• [a]

• Function
• a -> b

2

Boolean Values
• Bool

• There are only two Boolean values
• True

• False

• Functions for Bool:

3

Function Usage Meaning

not::Bool -> Bool not x If x is True, it returns False.

If x is False, it returns True.

(&&)::Bool->Bool->Bool x && y If both x and y are True, it returns

True.

Otherwise, it returns False.

(||)::Bool->Bool->Bool x || y If x or y are True, it returns True.

Otherwise, it returns False.

Exercise 6-1
• Define not using if function.

4

not x = if x then False else True

• Define it with pattern match.

not True = ...

not False = ...

• Define (&&) and (||) using if function.

• Define them with pattern match.

x && y = if x then ...

x || y = if x then ...

True && True = ... True || True = ...

True && False = ... True || False = ...

False && True = ... False || True = ...

False && Flase = ... False || False = ...

logic.hs

Numerical Values
• Integer values

• Int small integer numbers with sign

• Integer unlimited integer

• Integer literals
• decimal 5, 999, 12345678901234567890

• octal 0o644

• hex 0x1f

• Int or Integer depends on the context.

• Can be specified explicitly: (16::Int)

• Floating point numbers
• Float single precision floating point number

• Double double precision floating point number

• Floating point literals
• 1.5

• 3.141592

• 0.1543e+2

• 1343e-3

• Float or Double depends on the context.

• (1.5::Double)

5

Numerical Operations

6

Usage Meaning

x + y x add y

x - y x subtract y

x * y x multiply by y

x / y x divide by y (for floating points only)

x `div` y x divide by y (for integer only, round toward negative infinity)

x `quot` y x divide by y (for integer only, round toward zero)

x `mod` y reminder of (x `div` y) (for integer only)

x `rem` y reminder of (x `quot` y) (for integer only)

x ^ y x power of y

-x negate x

negate x same as -x

subtract x y same as (y - x)

abs x absolute value of x

odd x True if x is an odd number

even x True if x is an even number

Numerical Value Conversion

• Convert integer values to other typed values.

7

Usage Meaning

toInteger x convert Int value to Integer value

fromInteger x convert Integer value to numerial value (actual type depends on the

context)

fromIntegral x convert Int or Integer value to numerial value (actual type

depends on the context)

Usage Meaning

ceiling x the smallest integer which is greater than or equal to x

floor x the largest integer which is less than or equal to x

truncate x the closest integer to x which is between x and 0 (including x itself)

round x the closest integer to x (if there are two such integers, choose even

number)

• Convert floating point numbers to integer values

Exercise 6-2

• Given a price without VAT, calculate the price with VAT.

• Vat in Japan is 10%.

• Round the fraction.

• 10.5 → 11

• 10.4 → 10

8

import System.Environment

main = print $ vat $ read $ head args

vat :: Integer -> Integer

vat x =

vat.hs

Characters
• Char

• a unicode character

• Character literals:
• 'a'

• '*'

• ' '

• Escape sequences (special characters):

9

Usage Meaning

'∖t' tab

'∖n' new line

'∖r' carriage return

'∖v' vertical tab

'∖f' next page

'∖a' bell

'∖b' backspace

Usage Meaning

'∖NNN' character code with decimal NNN

'∖oNN' character code with octal NN

'∖xNN' character code with hex NN

'∖^X' control X

'∖'' single quote

'∖"' double quote

'∖∖' backslash (or ∖ symbol)

Character Strings

• String

• a list of characters

• same as [Char]

• String literals:
• "string"

• "Meisei"

• "abc∖ndef∖n∖"hello∖65∖tend"

10

Functions for Characters (1)
• Checking the kind of characters （type is Char -> Bool)

• Need to import Data.Char

11

Usage Meaning

isAlpha c if c is a unicode alphabet, then True

isLower c if c is a unicode small alphabet, then True

isUpper c if c is a unicode upper alphabet, then True

isAlphaNum c if c is a unicode alphabet or number, then True

isDigit c if c is a unicode number (0～9), then True

isHexDigit c if c is a unicode hex number (0～9，a～ｆ，A～Ｆ), then True

isOctDigit c if c is a unicode number (0～7), then True

isSpace c if c is a unicode space (space, tab, new line, etc.), then True

isAscii c if c is an ascii alphabet ('∖0'～'∖127'), then True

isLatin1 c if c is a Latin 1 alphabet ('∖0'～'∖255'), then True

isPrint c if c is a unicode printable character, then True

isControl c if c is not a unicode printable character, then True

Functions for Characters (2)
• Convert small letters to upper letters, and vice vasa

• Need to import Data.Char

12

Function Usage Meaning

toLower

:: Char -> Char

toLower c If c is an upper alphabet, returns its lower alphabet.

Otherwise, it returns c itselft.

toUpper

:: Char -> Char

toUpper c If c is an lower alphabet, returns its upper alphabet.

Otherwise, it returns c itselft.

• Convert characters to codes, and vice vasa

Function Usage Meaning

ord

:: Char -> Int

ord c returns the character code of c

chr

:: Int -> Char

chr n returns the character of which code is n

Tuples

• Tuples

• Combine several elements with different types.

• Tuple types depends on the number of elements and their order.

• Example of tuples
• (3, "string") :: (Int, String)

• ("lucky", 7) :: (String, Int)

• (1, "string", [5, 4, 3]) :: (Int, String, [Int])

• ('a', "string", (1, 3)) :: (Char, String, (Int, Int))

• Unit

• 0 element tuple
• （） :: ()

13

Functions for Tuples
• fst :: (a, b) -> a

• returns the first element from a two element tuple (a pair).

• fst (1, 2) → 1

• fst ("key", "value") → "key"

• snd :: (a,b) -> b

• returns the second element from a two element tuple.

• snd (1, 2) → 2

• snd ("key", "value") → "value"

• zip :: [a] -> [b] -> [(a, b)]

• zip xs ys returns a list of pairs taking elements from two lists xs and ys

• zip [1, 2, 3] [4, 5, 6] → [(1, 4), (2, 5), (3, 6)]

• zip [1, 2, 3] ["a", "b"] → [(1, "a"), (2, "b")]

• unzip :: [(a, b)] -> ([a], [b])

• reverse of zip function

• transforms a list of pairs to a list of first elements and a list of second element.

• unzip [(1, 4), (2, 5), (3, 6)] → ([1, 2, 3], [4, 5, 6])

• unzip [(1, "a"), (2, "b")] → ([1, 2], ["a", "b"])

14

List
• a list of values from the same type.

• cannot mix different type values.

• one direction list

• can only traverse from head to tail, not from tail to head.

• List types:
• [a]

• [Char]

• [Int]

• List examples:
• [] ::[a]

• [1, 2, 3] ::[Int]

• ['a', 'b', 'c'] ::[Char]=String

• ["aa", "bb", "cc"] ::[String]

• [['a', 'a'], ['b', 'b'], ['c', 'c']] ::[[Char]]

• a character list can be written as a string literal
• "Hello, World∖n"

15

： Operator

• (:) :: a -> [a] -> [a]

• x : xs

• returns a list by adding x in front of xs

• Example:

• 1 : [2, 3] → [1, 2, 3]

• 'a' : "bc" → "abc"

• : operator is right associative (evaluate right to left)

• 1:2:[] = 1:(2:[])

• [1, 2, 3] = 1 : 2 : 3 : []

16

elem Function

• elem :: a -> [a] -> Bool

• elem x xs

• checks whether x appears in xs or not.

• Example:
• elem 3 [2, 3, 5] → True

• elem 3 [2, 4, 6] → False

• 3 `elem` [2, 3, 5] → True

• notElem :: a -> [a] -> Bool

• the nagation of elem.

• elem can be defined as follows:
elem a [] = False

elem a (x:xs) = if a == x then True else elem a xs

17

Arithmetic Sequences

• Special syntax for arithmetic sequences.

• list of numbers or characters.

• [1..7] = [1, 2, 3, 4, 5, 6, 7]

• ['a'..'e'] = ['a', 'b', 'c', 'd', 'e']

• Change the increment (or decrement) value
• [1,3..11] = [1, 3, 5, 7, 9, 11]

• [10,8..1] = [10, 8, 6, 4, 2]

• Infinite lists
• [1..] = [1, 2, 3, 4, 5, 6, 7, 8, ‥‥]

• [1,3..] = [1, 3, 5, 7, 9, 11, ‥‥]

18

Functions for Lists
19

Function Usage Meaning

length::[a]->Int length xs returns the length of list xs

take::Int->[a]->[a] take n xs returns the prefix of xs of length n

reverse::[a]->[a] reverse xs returns the reverse list of xs

(++)::[a]->[a]->[a] xs ++ ys returns the concatenated list of xs and ys

concat::[[a]]->[a] concat xs concatenates all the elements in xs

replicate::Int->a->[a] replicate n x returns a list of n elements of x

lines::String->[String] lines cs returns a list of strings by separating cs by lines

unlines::[String]->String unlines xs concatenates strings in xs by adding new lines

words::String->[String] words cs returns a list of strings by separating cs by words

unwords::[String]->String unwords xs concatenates strings in xs by adding spaces

map::(a->b)->[a]->[b] map f xs returns a list by applying f to elements of xs

concatMap::(a->[b])->[a]->[b] concatMap f xs applies f to elements of xs and concatenates the result lists

filter::(a->Bool)->[a]->[a] filter f xs returns a list by selecting elements from xs which satisfies f

any::(a->Bool)->[a]->Bool any f xs checks whether there is an element in xs which satisfies f

head::[a]->a head xs returns the head element of xs

tail::[a]->[a] tail xs returns the list of removing the head element of xs

null::[a]->Bool null xs checks whether xs is empty or not

elem::a->[a]->Bool x `elem` xs checks whether x appears in xs or not

Data.List Module Function Usage Meaning

tails::[a]->[[a]] tails xs [xs, (tail xs), (tail(tail xs)), ...]

isPrefixOf::(Eq a)=>[a]->[a]->Bool xs `isPrefixOf` ys checks whether xs is the prefix of ys

sort::(Ord a)=>[a]->[a] sort xs sorts the elements in xs

group::(Eq a)=>[a]->[[a]] group xs groups the consecutive same elements

List Comprehensions
• Collects elements which satisfies the given condition.

• similar to filter function

• filter :: (a -> Bool) -> [a] -> [a]

• Examples:
• [abs x | x <- xs]

• for each element in xs, collects (abs x)

• [(x, y) | x <- [1, 2, 3], y <- ['a', 'b', 'c']]

• for each element x in [1, 2, 3] and each element y in ['a', 'b', 'c'], collects (x, y)

• [(1, 'a'), (1, 'b'), (1, 'c'), (2, 'a'), (2, 'b'), (2, 'c'), (3, 'a'),
(3,'b'), (3, 'c')]

• Quick sort function:

20

qsort [] = []

qsort (p:xs) = qsort lt ++ [p] ++ qsort gteq

where

lt = [x | x <- xs, x < p]

gteq = [x | x <- xs, x >= p]

Exercise 6-3

• Calculate the sum of square of odd numbers from 1 to 99.

• 12+32+52+‥‥+992

21

square n = n * n

main = print $ sum ...

os1.hs

• Use list comprehension

main = print $ sum [... | ...]

os2.hs

• Write it without using built in list functions, but defining

your own recursive function.

main = print $ os 99

os n = if n == 1 then ... else ...

os3.hs

cat -n Command
• UNIX cat command adds line numbers if -n option is specified.

• Write a similar command catn.hs which adds line number to a
file.

22

main = do cs <- getContents

putStr $ numbering cs

numbering :: String -> String

numbering cs = unlines $ map format $ zipLineNumber $ lines cs

zipLineNumber :: [String] -> [(Int, String)]

zipLineNumber xs = zip [1..] xs

format :: (Int, String) -> String

format (n, line) = rjust 4 (show n) ++ " " ++ line

rjust :: Int -> String -> String

rjust width s = replicate (width - length s) ' ' ++ s

catn.hs

catn.hs
• numbering cs

• divides cs into lines, add line numbers, and concatenates them

• zipLineNumber xs

• assigns line numbers to each line
• zip [1..] xs

• zips an infinite list of numbers starting from 1 and xs

• format (n, line)

• adds the line number n in front of line

• needs to pad spaces to make each number 4 characters length

• rjust width s

• pads spaces in front of s to create a string of width length

• right justification

• show

• show :: (Show a) => a -> String

• show x

• convers value x to a string

23

Exercise 6-4
• Modify fgrep.hs to adds line number in front of matched lines.

• The line number should be the line number in the input file, not the line

number of output.

24

import System.Environment

import Data.List

main = do args <- getArgs

cs <- getContents

putStr $ fgrep (head args) cs

fgrep :: String -> String -> String

fgrep pattern cs = unlines $ filter match $ lines cs

where

match :: String -> Bool

match line = any prefixp $ tails line

prefixp :: String -> Bool

prefixp line = pattern `isPrefixOf` line

fgrepn.hs

This is fgrep.hs

no line number version

% ./fgrepn ar < USA-states.txt

0007 CT Connecticut Hartford

0008 DE Delaware Dover

0020 MD Maryland Annapolis

...

