FUNCTIONAL PROGRAMMING
NO.6 BASIC VALUES

Tatsuya Hagino
hagino@sfc.keio.ac.jp

Slide URL

https://vu5.sfc.kelo.ac.jp/slide/

Basic Values and Types

- Haskell has the following basic values and types:
- Boolean values
* Bool
- Numerical values
- Int, Integer, Float, Double
- Character values
* Char
- Character string values
 String = [Char]
- Tuple values
© (a,b)
- Unit value
© ()
- List
© [a]
- Function
ca ->Db

Boolean Values

- Bool

- There are only two Boolean values
- True
- False

- Functions for Bool:

Function Usage Meaning

not: :Bool -> Bool not x If x IS True, it returns False.
If x IS False, it returns True.

(&&) : :Bool->Bool->Bool |x && y |Ifboth x and y are True, it returns
True.
Otherwise, it returns False.

(11)::Bool->Bool->Bool |x || y |Ifxoryare True, it returns True.
Otherwise, it returns False.

I S
Exercise 6-1

- Define not using if function.

not x = if x then False else True

- Define it with pattern match.

not True = ...
not False = ...

- Define (&&) and (| |) using if function.
- Define them with pattern match.

logic.hs

x && y = if x then ...

x || vy =1if x then ...

True && True = ... True || True = ...
True && False = True || False =
False && True = False || True =

False && Flase = ... False || False = ...

Numerical Values

- Integer values
- Int small integer numbers with sign
- Integer unlimited integer

- Integer literals

- decimal 5, 999, 12345678901234567890
- octal 0o644
- hex 0x1f

Int or Integer depends on the context.
Can be specified explicitly: (16: :Int)

- Floating point numbers
- Float single precision floating point number
- Double double precision floating point number

- Floating point literals
- 1.5
3.141592
0.1543e+2
1343e-3
Float or Double depends on the context.
(1.5: :Double)

N
Numerical Operations

Usage Meaning
X +y x addy
X -y x Subtract y
Xx *y x multiply by y
x /vy x divide by y (for floating points only)
x ‘div’ y x divide by y (for integer only, round toward negative infinity)
x ‘quot’ y x divide by y (for integer only, round toward zero)
X mod’ y reminder of (x “div" y) (for integer only)
X ‘rem y reminder of (x “quot” y) (forinteger only)
x Ny x power of y
-x negate x
negate x same as -x
subtract x y same as (y - x)
abs x absolute value of x
odd x True if x is an odd number
even x True if x iS an even number

Numerical Value Conversion

- Convert integer values to other typed values.

Usage Meaning

toInteger x convert Int value to Integer value

fromInteger x | convert Integer value to numerial value (actual type depends on the
context)

fromIntegral x | convert Int or Integer value to numerial value (actual type
depends on the context)

- Convert floating point numbers to integer values

Usage Meaning
ceiling x the smallest integer which is greater than or equal to x
floor x the largest integer which is less than or equal to x
truncate x the closest integer to x which is between x and 0 (including x itself)
round x the closest integer to x (if there are two such integers, choose even
number)

B
Exercise 6-2

- Given a price without VAT, calculate the price with VAT.
- Vat in Japan is 10%.

- Round the fraction.
- 105 - 11
- 104 — 10

vat.hs

import System.Environment
main = print $§ vat $ read $ head args

vat :: Integer -> Integer
vat x

. N
Characters

- Char
- a unicode character

- Character literals:

. 'a'
o T k1

- Escape sequences (special characters):

Usage Meaning Usage Meaning
"\t' tab "\NNN' character code with decimal NNN
"\n' new line "\ONN' character code with octal NN
"\r' carriage return "\xXNN' character code with hex NN
"\v' vertical tab "*X' control X
"\f' next page "\'' single quote
"\a' bell "\"' double quote
"\b' backspace "\\' backslash (or \ symbol)

Character Strings

- String
- a list of characters
- Same as [Char]

- String literals:
- "string"
- "Meisei"
- "abc\ndef\n\"hello\65\tend"

Functions for Characters (1)

- Checking the kind of characters (type is Char -> Bool)
- Need to import Data.Char

Usage Meaning
isAlpha c if ¢ is a unicode alphabet, then True
isLower c if ¢ is a unicode small alphabet, then True
isUpper c if ¢ is a unicode upper alphabet, then True
isAlphaNum c if ¢ is a unicode alphabet or number, then True
isDigit c if ¢ is a unicode number (0~9), then True
isHexDigit c if ¢ is a unicode hex number (0~9, a~f, A~F), then True
isOctDigit c if ¢ is a unicode number (0~7), then True
isSpace c if ¢ is a unicode space (space, tab, new line, etc.), then True
isAscii ¢ if ¢ is an ascii alphabet ('\0'~ "\127"'), then True
isLatinl c if ¢ is a Latin 1 alphabet ('\0'~ '\255"), then True
isPrint c if ¢ is a unicode printable character, then True
isControl c if ¢ is not a unicode printable character, then True

Functions for Characters (2)

- Convert small letters to upper letters, and vice vasa
- Need to import Data.Char

Function Usage Meaning
toLower toLower c | If cis an upper alphabet, returns its lower alphabet.
:: Char -> Char Otherwise, it returns c itselft.
toUpper toUpper c | If cis an lower alphabet, returns its upper alphabet.
:: Char -> Char Otherwise, it returns c itselft.

- Convert characters to codes, and vice vasa

Function Usage Meaning
ord ord c returns the character code of ¢
:: Char -> Int
chr chr n returns the character of which code is n
:: Int -> Char

Tuples

- Tuples
- Combine several elements with different types.
- Tuple types depends on the number of elements and their order.

- Example of tuples

- (3, "string") :: (Int, String)

* ("lucky", 7) :: (String, Int)

- (1, "string", [5, 4, 31]) :: (Int, String, [Int])

- ('a', "string", (1, 3)) :: (Char, String, (Int, Int))
- Unit

- 0 element tuple
- 0 0 ()

Functions for Tuples

- fst :: (a, b) -> a
- returns the first element from a two element tuple (a pair).
- fst (1, 2) 51
- fst ("key", "value") — "key"

°snd :: (a,b) -> Db
- returns the second element from a two element tuple.
- snd (1, 2) — 2
- snd ("key", "value") — "wvalue"

- zip :: [a] -> [b] -> [(a, Db)]
- zip xs ys returns a list of pairs taking elements from two lists xs and ys
- zip [1, 2, 3] [4, 5, 6] — [(1, 4), (2, 5), (3, 6)]
- zip [1, 2, 3] ["a", "b"] — [(1, "a"), (2, "b")]

*unzip :: [(a, b)] -> ([a], [b])
- reverse of zip function
- transforms a list of pairs to a list of first elements and a list of second element.
- unzip [(1, 4), (2, 5), (3, 6)] — ([1, 2, 3], [4, 5, 6])
- unzip [(1, "a"), (2, "b")] — ([1, 2], ["a", "b"])

List

- a list of values from the same type.
- cannot mix different type values.
- one direction list
- can only traverse from head to tail, not from tail to head.

- List types:
+ [al
 [Char]
- [Int]

- List examples:

- [1 :: [a]

- [1, 2, 3] ::[Int]

- ['a', 'b', 'ec'] :: [Char]=String
- ["aa", "bb", "cc"] :: [String]

- [['a', '@a'], ['D', '], ['c', 'e']] ::[[Char]]

- a character list can be written as a string literal
- "Hello, World\n"

: Operator
e (:) :: a -> [a] -> [a]

X . XS
- returns a list by adding x in front of xs

- Example:
-1 : [2, 3] — [1, 2, 3]
o ! a 1 : "bc" — " abc"

- : operator Is right associative (evaluate right to left)
«1:2:[] = 1:(2:1[1])
- [1, 2, 31 =1 : 2 : 3 : []

elem Function

elem :: a -> [a] -> Bool
- elem x xs
- checks whether x appears in xs or not.

- Example:
- elem 3 [2, 3, 5] — True
- elem 3 [2, 4, 6] — False
-3 ‘elem” [2, 3, 5] — True
notElem :: a -> [a] -> Bool

- the nagation of elem.

elem can be defined as follows:
elem a |[] = False

elem a (x:xs) = i1if a == x then True else elem a xs

Arithmetic Sequences

- Special syntax for arithmetic sequences.
- list of numbers or characters.
- [1..7] = [1, 2, 3, 4, 5, 6, 7]
-['a'..'e'] = ['a', 'b', 'c¢', 'd', 'e']

- Change the increment (or decrement) value
- [1,3..11] = [1, 3, 5, 7, 9, 11]
- [10,8..1] = [10, 8, 6, 4, 2]

 Infinite lists
¢ [1"] = [1I 2/ 3/ 4/ 5/ 6/ 7/ 8/]
- [1,3..1 =11, 3, 5, 7, 9, 11, ----]

Functions for Lists

Function

Usage

Meaning

length::[a]->Int

length xs

returns the length of list xs

take: :Int->[a]->[a]

take n xs

returns the prefix of xs of length n

reverse::[a]->[a]

reverse Xs

returns the reverse list of xs

(++) : : [a]l->[a]l->[a]

Xs ++ ys

returns the concatenated list of xs and ys

concat::[[a]l]l->[a]

concat xs

concatenates all the elements in xs

replicate: :Int->a->[a]

replicate n x

returns a list of n elements of x

lines: :String->[String]

lines cs

returns a list of strings by separating cs by lines

unlines:: [String]->String

unlines xs

concatenates strings in xs by adding new lines

words: :String->[String]

words cs

returns a list of strings by separating e¢s by words

unwords: : [String] ->String

unwords xs

concatenates strings in xs by adding spaces

map: : (a->b) ->[a]->[b]

map £ xs

returns a list by applying £ to elements of xs

concatMap: : (a->[b])->[a]->[b]

concatMap f xs

applies £ to elements of xs and concatenates the result lists

filter:: (a->Bool)->[a]->[a]

filter £ xs

returns a list by selecting elements from xs which satisfies £

any:: (a->Bool) ->[a] ->Bool any f xs checks whether there is an element in xs which satisfies £
head: :[a]->a head xs returns the head element of xs

tail::[a]->[a] tail xs returns the list of removing the head element of xs
null:: [a]->Bool null xs checks whether xs is empty or not

elem: :a->[a] ->Bool

X ‘elem’ xs

checks whether x appears in xs or not

Data.List Module Function

Usage

Meaning

tails::[a]->[[a]l]

tails xs

[xs, (tail xs), (tail(tail =xs)), ...]

isPrefixOf:: (Eq a)=>[a]->[a]->Bool

xs " isPrefixOf"

ys

checks whether xs is the prefix of ys

sort:: (Ord a)=>[a]->[a]

sort xs

sorts the elements in xs

group:: (Eq a)=>[a]->[[a]]

group Xs

groups the consecutive same elements

List Comprehensions

- Collects elements which satisfies the given condition.
- similar to £ilter function
- filter :: (a -> Bool) -> [a] -> [a]

- Examples:
- [abs x | x <- xs]
- for each element in xs, collects (abs x)
¢ [(x/ Y) I x <- [1/ 2! 3]/ Y <- ['a'/ 'b'/ 'C']]
- foreachelementxin [1, 2, 3] andeachelementyin['a', 'b', 'c'],collects (x, y)
[(x, 'a'), (1, 'b"), (1, 'e"), (2, 'a"), (2, 'b"), (2, '¢"), (3, 'a'),
(3,'b"), (3, 'e¢")]

- Quick sort function:

gsort [] = []
gsort (p:xs) = gsort 1lt ++ [p] ++ gsort gteq
where
1t =[x | x <- xs, x < p]

gteq = [x | x <- xs, x >= p]

Exercise 6-3

- Calculate the sum of square of odd numbers from 1 to 99.
. 12+32+52+. - .+992

osl.hs

square n = n * n
main = print $ sum ...

- Use list comprehension

os2.hs

main = print $ sum [... | ...]

- Write it without using built in list functions, but defining
your own recursive function.

os3.hs

main = print $§ os 99

os n=31if n == 1 then ... else ...

cat -n Command

- UNIX cat command adds line numbers if -n option is specified.

- Write a similar command catn.hs which adds line number to a
file.

catn.hs

main = do cs <- getContents
putStr $ numbering cs

numbering :: String -> String
numbering cs = unlines $ map format $ zipLineNumber $ lines cs

zipLineNumber :: [String] -> [(Int, String)]
zipLineNumber xs = zip [l1..] =xs

format :: (Int, String) -> String
format (n, line) = rjust 4 (show n) ++ " " ++ line
rjust :: Int -> String -> String

rjust width s = replicate (width - length s) ' ' ++ s

catn.hs

* numbering cs
- divides es into lines, add line numbers, and concatenates them

zipLineNumber xs

- assigns line numbers to each line

- zip [1..] xs

- zips an infinite list of numbers starting from 1 and xs

format (n, line)
- adds the line number n in front of 1ine
- needs to pad spaces to make each number 4 characters length

rjust width s
- pads spaces in front of s to create a string of width length
- right justification

show

- show :: (Show a) => a -> String
- show x

- convers value x to a string

Exercise 6-4

- Modify fgrep.hs to adds line number in front of matched lines.

- The line number should be the line number in the input file, not the line
number of output.

fgrepn.hs

import System.Environment

import Data.List This is fgrep.hs
no line number version

main = do args <- getArgs
cs <- getContents
putStr $§ fgrep (head args) cs

fgrep :: String -> String -> String
fgrep pattern cs = unlines $ filter match $ lines cs
where
match :: String -> Bool
match line = any prefixp $ tails line

prefixp :: String -> Bool
prefixp line = pattern "isPrefixOf 1line

% ./fgrepn ar < USA-states.txt
0007 CT Connecticut Hartford
0008 DE Delaware Dover

0020 MD Maryland Annapolis

