
FUNCTIONAL PROGRAMMING
NO.7 BASIC SYNTAX
Tatsuya Hagino
hagino@sfc.keio.ac.jp

1

https://vu5.sfc.keio.ac.jp/slide/
Slide URL

Comment
• One line comment

• from -- to the end of line is comment

2

square n = n * n -- square of n

• Block comment
• from {- to -} is a comment
• Block comments can be nested.

{-
This function is not used now.
square n = n * n {- square of n -}
-}

Literate Format
• Puts Haskell programs in a document

• The extension is .lhs

3

> main = print $ square 5

Function square returns the square of n.

> square :: Int -> Int
> square n = n * n

∖begin{code}
main = print $ square 5
∖end{code}

Function square returns the square of n.
∖begin{code}
square :: Int -> Int
square n = n * n
∖end{code}

Layout and Brace Syntax
• Layout syntax groups lines with same indentation.

4

main = do cs <- getContents
putStr cs

cat.hs

• Using brace syntax with { } and ;, groups expressions
without aligning indentation.

main = do { cs <- getContents;
putStr cs }

main = do { cs <- getContents; putStr cs }

main = do {
cs <- getContents
; putStr cs }

no semicolon at the end

Offside Rule and Continuation
• In layout syntax, multiple expressions are grouped by aligning the

indent.
• The indentation is called offside line.

5

main = do cs <- getContents
putStr cs

offside line of Main module
offside line of do expression

• If a line has more indentation than the current offside line,
it is treated as continuation of the previous line.

main = do cs <-
getContents

putStr cs
offside line of do expression

if Expression

• cond is an expression with Bool type
• If the cond is True, it returns exp1. Otherwise, it return
exp2.

• exp1 and exp2 are expressions, not code blocks (groups
of expressions)
• You can write only one expression.

6

if cond then exp1 else exp2

Pattern Match
• Using pattern matching of values, define functions or use

in case expressions

7

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

• Patterns
• variable pattern
• wildcard pattern
• literal pattern
• tuple pattern
• list pattern
• data constructor pattern

Variable and Wildcard Patterns
• Variable patter

• matches with any value
• The variable is bound to the matched value.

8

id :: a -> a
id x = x

• Wildcard pattern
• matches with any value
• The matched value is not bound to any variable.
• used as a space holder

const :: a -> b -> a
const x _ = x

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

Literal and Tuple Patterns
• Literal Pattern

• matches with the given literal
• available for numerical literal, character literal and string literal

9

expandTab :: Char -> Char
expandTap '∖t' = '@'
expandTab c = c

• Tuple Pattern
• matches with a tuple value
• Each tuple elements are matched.
• Tuple elements have any pattern.
• (pat1, pat2, pat3, ‥‥)

format :: (Int, String) -> String
format (n, line) = rjust 6 (show n) ++ " " ++ line

List and Data Constructor Patterns
• List pattern

• matches with a list
• [pat1, pat2, pat3, ‥‥]

10

last [] = error "last []"
last [x] = x
last (_:xs) = last xs

• Data constructor pattern
• Lists are constructed from the empty list [] and :

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

@ Pattern and Guard
• @ pattern

• 'as' pattern
• var@pat
• matches with pat and the matched value is bound to var

11

lstrip str@(c:cs) = if isSpace c then lstrip cs else str

• Guard
• Bool expression is checked after the pattern match.
• pat1 pat2 pat3 ‥‥ | guard

joinPath :: String -> String -> String
joinPath a b | null a = pathSep : b

| last a == pathSep = a ++ b
| otherwise = a ++ pathSepStr ++ b

case Expression

• pattern match and check guard with exp
• The first true match exp?? value is selected.

12

case exp of
patA | guardA1 -> expA1

| guardA2 -> expA2
: :

patB | guardB1 -> expB1
| guardB2 -> expB2

: :
: :

case str of
"" -> ""
(c:cs) -> toUpper c : cs

• of is followed by a code block.
case str of { "" -> ""; (c:cs) -> toUpper c : cs }

Function Definition

• defines a function with pattern match
• Function name and variables are identifiers:

• starts with a small alphabet letter
• follows small and upper alphabet letters, numbers, underscore and

single quote.
• The following identifiers are reserved and cannot be used:

• case, class, data, default, deriving, do, else, if, import,
in, infix, infixl, infixr, instance, let, module, newtype,
of, then, type, where, -

13

fun patA1 patA2 ‥‥ | guardA1 = expA1
| guardA2 = expA2

: :
fun patB1 patB2 ‥‥ | guardB1 = expB1

| guardB2 = expB2
: :

Binary Operator Definition

• defines a binary operator like function definition
• Any combination of symbols are regarded as a binary operator.
• Any function can be treated as a binary operator by: `fun`
• Any binary operator can be treated as a function by: (op)

14

pat1 op pat2 = exp

(||) :: Bool -> Bool -> Bool
True || _ = True
False || x = x

Priority Left Associative Non Associative Right Associative

9 !! ..

8 ^ ^^ **

7 * / `div` `mod` `rem` `quot`

6 + -

5 : ++

4 == /= < <= > >= `elem` `notElem`

3 &&

2 ||

1 >> >>=

0 $ $! `seq`

let Expression

• let expression allows to define variables and functions which
can be used in exp
• exp is evaluated under def1, def2, ‥‥ are defined.
• The definitions cannot be referred from outside of exp.

15

let def1
def2
def3
:
:

in exp

f n = let x = n + 1
y = n + 2
z = n + 3

in x * y * z

where Clause

• def1, def2, def3 can be used in def0
• def1, def2, def3 can refer parameters of def0

16

def0 where def1 def2 def3 ‥‥

resolverY2K y = base + y where base = 1900

expandTab :: Int -> String -> String
expandTab width cs = concatMap translate cs
where
translate '∖t' = replicate width ' '
translate c = [c]

Exercise 7-1
• Inputs a year and outputs True if it is a leap year.

• If a year divisible by 4, it is a leap year,
• but, if it is divisible by 100, it is not a leap year,
• but, if it is divisible by 400, it is a leap year.

17

import System.Environment

main = do args <- getArgs
print $ leap $ read $ head args

leap::Int -> Bool
leap y = if ...

leap.hs

% ghc leap.hs
...
% ./leap 2020
True
% ./leap 2021
False
%

Exercise 7-2
• Inputs a year and a month, outputs the number of days in the

month.
• e.g. 2020/2 has 29 days, and 2020/3 has 31 days.
• If the year is a leap year, its February has 29 days.
• (xs !! n) gives nth element of xs

18

import System.Environment

main = do args <- getArgs
print $ monthDay (read $ args !! 0) (read $ args !! 1)

monthDay::Int -> Int -> Int
monthDay ... = ...

monthday.hs

• Use pattern match.
% ghc monthday.hs
...
% ./monthday 2020 2
29
% ./monthday 2020 11
30
%

Exercise 7-3
• Inputs a year, a month and a day, calculates the number

of days from 1/1/1
• Let 1/1/1 be the first day, 1.

19

import System.Environment

main =
do args <- getArgs

print $ days (read $ args !! 0) (read $ args !! 1) (read $ args !! 2)

yearDay year = if leap year then 366 else 365

monthDay year month = ...

days year month day = ...

days.hs

• Using this, we can calculate day of the week.
• 1/1/1 is Monday.

% ./days 2020 11 24
737753
%

Exercise 7-4
• Given a birthday and outputs the following anniversary dates:

• 10 days after the birth
• 100 days after the birth
• 1000 days after the birth
• 10000 days after the birth.

20

import System.Environment

main = do args <- getArgs
let year = read $ args !! 0
let month = read $ args !! 1
let day = read $ args !! 2
putStrLn $ yearStr year month (day + 10)
putStrLn $ yearStr year month (day + 100)
putStrLn $ yearStr year month (day + 1000)
putStrLn $ yearStr year month (day + 10000)

yearStr:: Int -> Int -> Int -> String
yearStr year month day = ...

anniversary.hs

% ./anniversary 2001 1 1
2001/1/11
2001/4/11
2003/9/28
2028/5/19
%

Exercise 7-5
• Inputs a year and a month, outputs the calendar.

21

% ./cal 2017 11
Su Mo Tu We Th Fr Sa

1 2 3 4
5 6 7 8 9 10 11

12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30
%

• Hint
• Calculate the first day of the month starts which day of the week.

(see exercise 7-3)
• Calculate the number of days in the month. (see exercise 7-2)
• Format the calendar nicely.

• e.g. create the list of days and fold for each week.

import System.Environment

main = do args <- getArgs
purStr $ cal (read $ args !! 0)

(read $ args !! 1)

cal::Int -> Int -> String

cal.hs

	Functional Programming�No.7　Basic Syntax
	Comment
	Literate Format
	Layout and Brace Syntax
	Offside Rule and Continuation
	if Expression
	Pattern Match
	Variable and Wildcard Patterns
	Literal and Tuple Patterns
	List and Data Constructor Patterns
	@ Pattern and Guard
	case Expression
	Function Definition
	Binary Operator Definition
	let Expression
	where Clause
	Exercise 7-1
	Exercise 7-2
	Exercise 7-3
	Exercise 7-4
	Exercise 7-5

