
FUNCTIONAL PROGRAMMING

NO.8 FUNCTIONS

Tatsuya Hagino

hagino@sfc.keio.ac.jp

1

https://vu5.sfc.keio.ac.jp/slide/

Slide URL

Function Definition

• defines a function with pattern match

• Function name and variables are identifiers:
• starts with a small alphabet letter

• follows small and upper alphabet letters, numbers, underscore and
single quote.

• The following identifiers are reserved and cannot be used:
• case, class, data, default, deriving, do, else, if, import,
in, infix, infixl, infixr, instance, let, module, newtype,
of, then, type, where, -

2

fun patA1 patA2 ‥‥ | guardA1 = expA1
| guardA2 = expA2

: :

fun patB1 patB2 ‥‥ | guardB1 = expB1
| guardB2 = expB2

: :

Recursion
• Functional programming languages do not have for or

while statements for repetition.

• Instead, use recursion to implement repetition.

3

factorial n = if n == 0 then 1

else n * factorial(n - 1)

recursive call of factorial

• Recursive call

• Call itself directly or indirectly.

• Divide and Conquer

• Divide a big program into smaller ones.

• Smaller ones are the same problem but small size.

• Apply recursively until the size becomes small enough.

Recurrence Formula and Sequence

• Sequence defined by a recurrence formula.

• 𝑎𝑛 is defined in terms of 𝑎𝑛−1 and/or 𝑎𝑛−2 .

𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2

• Can be implemented by using recursive calls.

4

fib n | n == 0 = 1

| n == 1 = 1

| otherwise = fib(n - 1) + fib(n - 2)

Example

• Define a function sumn which adds numbers from 1 to 𝑛.

• Using sum :

5

sumn n = sum [1..n]

• The sum of 1 to 𝑛 is equal to the sum of 1 to 𝑛 − 1 and

add 𝑛. Therefore, using recursion:

sumn n = if n == 0 then 0

else n + sumn(n-1)

Exercise 8-1

• Define 𝑛𝐶𝑟 which is the number of combinations taking 𝑟
elements from 𝑛 elements.

• 𝑛𝐶0 = 𝑛𝐶𝑛 = 1

• 𝑛𝐶𝑟 = 𝑛−1𝐶𝑟 + 𝑛−1𝐶𝑟−1

6

import System.Environment

main = do args <- getArgs

print $ comb (read $ args !! 0) (read $ args !! 1)

comb n r | r == 0 = 1

| n == r = 1

| otherwise = ...

comb.hs

% stack ghc comb.hs

...

% ./comb 10 5

252

%

The number of ways for the change

• If you buy a drink of 170 yen and pay 200 yen, you get 30 yen change.

• There are many ways of giving 30 yen change:
• three 10 yen coins

• six 5 yen coins

• thirty 1 yen coins

• ten 1 yen coins, two 5 yen coins and one 10 yen coins

• and so on

• Let us calculate the number of ways for the change.
• Let 𝑎(𝑛) be the number of ways to pay 𝑛 yen by 1 yen coins only:

• 𝑎(𝑛) = 1

• Let 𝑏(𝑛) be the number of ways to pay 𝑛 yen with 1 yen and 5 yen coins:
• 𝑏(𝑛) = 𝑎(𝑛) (𝑛 < 5)

• 𝑏(𝑛) = 𝑎(𝑛) + 𝑏(𝑛 − 5) (𝑛 ≥ 5)

• Let 𝑐(𝑛) be the number of ways to pay 𝑛 yen with 1 yen, 5 yen and 10 yen
coins:
• 𝑐(𝑛) = 𝑏(𝑛) (𝑛 < 10)

• 𝑐(𝑛) = 𝑏(𝑛) + 𝑐(𝑛 − 10) (𝑛 ≥ 10)

7

Exercise 8-2

• change c n is the number of ways to hand n yen with less than or
equal to c yen coins.

8

import System.Environment

main = do args <- getArgs

print $ change 500 $ read $ head args

change 500 n = if n < 500 then change 100 n else ...

change 100 n = ...

change 50 n = ...

...

change 1 n = 1

change.hs

% stack ghc change.hs

...

% ./change 30

16

% ./change 1000

248908

%

Recursive Call for Lists

• Any list consists of the empty list [] and (:).
• [] :: [a]

• (:) :: a -> [a] -> [a]

• [1, 2, 3] = 1:(2:(3:[]))

• 1:[2] → [1, 2]

• 5:[] → [5]

• For lists, [] and (:) pattern match are used:

9

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = (f x) : (map f xs)

recursive call for map

Recursive Calls (Examples)

• length (calculate the length of a list)
• length [] = 0

• length (x:xs) = 1 + length xs

• sum (calculate the sum of the elements in a list)
• sum [] = 0

• sum (x:xs) = x + sum xs

• (++) (concatenate the two lists)
• (++) :: [a] -> [a] -> [a]

• (++) [] ys = ys

• (++) (x:xs) ys = x : ((++) xs ys)

• concat (concatenate all the lists in a list)
• concat :: [[a]] -> [a]

• concat [] = []

• concat (x:xs) = x ++ concat xs

10

Exercise 8-3

• Write your own myreverse which reverses a list.

• The reverse of the empty list is the empty list.

• If you want to reverse(x:xs) , what is necessary after reversing xs .

11

import System.Environment

main = do args <- getArgs

print $ myreverse $ map read args

myreverse :: [Int] -> [Int]

myreverse [] = []

myreverse (x:xs) = ...

reverse.hs

% stack ghc reverse.hs

...

% ./reverse 1 2 3 4 5

[5,4,3,2,1]

%

Exercise 8-4

• Write your own mysort which sorts an integer list from small to big.

• The empty list is the empty list if you sort it.

• If you want to sort (x:xs) , insert x after sorting xs.

12

import System.Environment

main = do args <- getArgs

print $ mysort $ map read args

mysort :: [Int] -> [Int]

mysort [] = []

mysort (x:xs) = ...

myinsert :: Int -> [Int] -> [Int]

myinsert x [] = [x]

myinsert x (y:ys) = ...

sort.hs

% stack ghc sort.hs

...

% ./sort 5 3 7 2

[2,3,5,7]

%

Function Binding

• Define square function which calculates the square of a

given argument.

• Bind square to a function which calculates the square of

a given argument.

• just like a = 10 binds a to the constant 10

• square = ...

13

square n = n * n

Higher Order Function

• Functions as values

• can be used as arguments to functions

• can be returned from functions

14

map square [1,2,3,4,5] ⇒ [1,4,9,16,25]

• map takes a function as an argument

• map returns a function

• (map square) is a function which takes a list

Anonymous Function

• Create a function without giving a name

• Function binding = create a function + bind it a variable

• Usage

• Create function values

• Create a function which can be used only once

15

∖pat1 pat2 ‥‥ -> exp

square = ∖n -> n * n

map (∖n -> n * n) [1, 2, 3, 4, 5]

Anonymous Function (cont.)

• Can use pattern match.

• Only one pattern is allowed

16

add x y = x + y

add = ∖x y -> x + y

(∖x y -> x + y) 2 3 ⇒ (∖y -> 2 + y) 3 ⇒ 2 + 3 ⇒ 5

add2 (x, y) = x + y

add2 = ∖(x, y) -> x + y

map (∖(x, y) -> x + y) [(1,11),(2,12),(3,13)]
⇒ [(1+11),(2+12),(3+13)]

⇒ [12,14,16]

Function Composition

• Compose two functions and create a new function
• (f . g) x = f (g x)

• f . g = ∖x -> f (g x)

17

(.) :: (b -> c) -> (a -> b) -> (a -> c)

Usage: f . g

numberOfLines :: String -> Int

numberOfLines cs = length $ lines cs

numberOfLines :: String -> Int

numberOfLines = length . lines

• Difference with ($)
• ($) :: (a -> b) -> a -> b

• f $ x = f x

Function Composition (cont.)

• Using function composition

18

sortLines :: String -> String

sortLines cs = unlines $ sort $ lines cs

sortLines = unlines . (sort . lines)

• (.) is right associative

sortLines = unlines . sort . lines

• Another example:

tac :: String -> String

tac cs = unlines $ reverse $ reverse $ reverse $ lines cs

tac = unlines . reverse . reverse . reverse . lines

Partial Application

• Arguments are not necessarily given at the same time.
• addThree i j k = i + j + k

• addThree 5 is a partial application of addThree with the first

argument

• Partial Application

• Give some of the arguments, not all of them

19

addThree i j k = i + j + k

addThree 5 = ∖j k -> 5 + j + k

(addThree 5) 6 = ∖k -> 5 + 6 + k

((addThree 5) 6) 7 = 5 + 6 + 7

Section

• Partial application of binary operators

• Example:
• (+ 1) is a partial application of (+) giving the second argument

• (+ 1) 2 ⇒ 2 + 1 ⇒ 3

• (1 +) is a partial application of (+) giving the first argument
• (1 +) 2 ⇒ 2 + 1 ⇒ 3

• Note:
• (-) is both binary and unary operator.

• (- 1) is just -1

• use (subtract 1)

20

map (+ 7) [1,2,3,4,5]

⇒ [8,9,10,11,12]

filter (/= '∖r') "aaa∖r∖nbbb∖r∖nccc∖r∖nddd∖r∖neee∖r∖n"
⇒ "aaa∖nbbb∖nccc∖nddd∖neee∖n"

Point-Free Style
• Category theory

• theory of objects and arrows

• point = value

• Point-free style
• not using values, but using function compositions only

21

import System.Environment

import Data.List

main = do args <- getArgs

cs <- getContents

putStr $ fgrep (head args) cs

fgrep :: String -> String -> String

fgrep pattern cs = unlines $ filter match $ lines cs

where

match :: String -> Bool

match line = any prefixp $ tails line

prefixp :: String -> Bool

prefixp line = pattern `isPrefixOf` line

fgrep.hs

A B

C

D

Convert to point-free style

• without using where clause

22

fgrep :: String -> String -> String

fgrep pattern cs = unlines $ filter match $ lines cs

where

match :: String -> Bool

match line = any prefixp $ tails line

prefixp :: String -> Bool

prefixp line = pattern `isPrefixOf` line

fgrep :: String -> String -> String

fgrep pattern cs = unlines $ filter (match pattern) $ lines cs

match :: String -> String -> Bool

match pattern line = any (prefixp pattern) $ tails line

prefixp :: String -> String -> Bool

prefixp pattern line = pattern `isPrefixOf` line

Convert to point-free style (cont.)

23

fgrep :: String -> String -> String

fgrep pattern cs = unlines $ filter (match pattern) $ lines cs

fgrep pattern = unlines . filter (match pattern) . lines

prefixp :: String -> String -> Bool

prefixp pattern line = pattern `isPrefixOf` line

prefixp pattern = (pattern `isPrefixOf`)

match :: String -> String -> Bool

match pattern line = any (prefixp pattern) $ tails line

match pattern = any (prefixp pattern) . tails

match pattern = any (pattern `isPrefixOf`) . tails

Convert to point-free style (cont.)

24

import System.Environment

import Data.List

main = do args <- getArgs

cs <- getContents

putStr $ fgrep (head args) cs

fgrep :: String -> String -> String

fgrep pattern cs = unlines $ filter match $ lines cs

where

match :: String -> Bool

match line = any prefixp $ tails line

prefixp :: String -> Bool

prefixp line = pattern `isPrefixOf` line

fgrep.hs

import System.Environment

import Data.List

main = do args <- getArgs

cs <- getContents

putStr $ fgrep (head args) cs

fgrep :: String -> String -> String

fgrep pattern = unlines . filter (match pattern) . lines

match :: String -> String -> Bool

match pattern = any (pattern `isPrefixOf`) . tails

fgrep.hs

Point-free style

Convert further to point-free style

• In order not to refer the argument of match, the order of
function application needs to be changed.

25

match pattern = any (pattern `isPrefixOf`) . tails

match pattern = any (isPrefixOf pattern) . tails

match pattern = ((any . isPrefixOf) pattern) . tails

match pattern = (. tails) $ (any . isPrefixOf) pattern

match = (. tails) . any . isPrefixOf

f . g (. g) $ f

import System.Environment

import Data.List

main = do args <- getArgs

cs <- getContents

putStr $ fgrep (head args) cs

fgrep :: String -> String -> String

fgrep = ...

fgrep2.hs

Exercise 8-5
• Make fgrep function point-free completely.

26

fgrep :: String -> String -> String

fgrep pattern cs = unlines $ filter (match pattern) $ lines cs

fgrep pattern = unlines . filter (match pattern) . lines

Folding Functions
• List related functions are often defined as follows:

27

f [] = v

f (x:xs) = x `op` f xs

• In case of the empty list, the value is v.

• Otherwise, take out the head element x, apply itself to the rest of the list and

combine the result by op.

• For example, the following functions are exactly in this style:

sum [] = 0

sum (x:xs) = x + sum xs

prod [] = 1

prod (x:xs) = x * prod xs

• By choosing v and op, various functions may be created.

• Create a higher order function which takes v and op, returns a function which

does the above.

Right Associative Folding Function: foldr

• Using this folding function foldr, list related functions can easily be
defined.
• foldr takes two arguments: first one which creates the result and the second one for

the empty value case.

28

foldr::(a -> b -> b) -> b -> [a] -> b

foldr f v [] = v

foldr f v (x:xs) = f x (foldr f v xs)

sum = foldr (+) 0

prod = foldr (*) 1

length::[a] -> Int

length [] = 0

length (x:xs) = 1 + length xs

• By choosing f, length can be defined by foldr.

length = foldr (∖x n -> 1 + n) 0

• Define map function using foldr.

map::(a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = (f x) : (map f xs)

map2 f = foldr

map2.hs

Exercise 8-6

• Define (++) which connects two lists by foldr.

29

(++)::[a] -> [a] -> [a]

(++) [] ys = ys

(++) (x:xs) ys = x : ((++) xs ys)

append xs ys = foldr

append.hs

• Define reverse which reverses a list by foldr.

reverse::[a] -> [a]

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

rev = foldr

rev.hs

Left Associative Folding Function: foldl

• foldr is for right associative operators. There is a similar function for left
associative operators: foldl.

• Creates values from left to right.

• Since (+) and (*) are left associative operators, it is natural to use foldl.

30

foldl::(a -> b -> a) -> a -> [b] -> a

foldl f v [] = v

foldl f v (x:xs) = foldl (f v x) xs

sum = foldl (+) 0

prod = foldl (*) 1

reverse::[a] -> [a]

reverse xs = reverse2 [] xs

reverse2::[a] -> [a] -> [a]

reverse2 ys [] = ys

reverse2 ys (x:xs) = reverse2 (x:ys) xs

• reverse can be implemented much lighter.

reverse = foldl (∖xs x -> x:xs) []

Exercise 8-7
• Convert a binary digit number to a decimal number.

• An argument is given as a string. Convert it to a list of numbers by digit.

• Use foldl to combine the result.

• Make digit and foldl both point-free.

31

import System.Environment

import Data.Char

main = do args <- getArgs

print $ b2d $ head args

digit::Char -> Int

digit ch = ord ch - ord '0'

b2d::String -> Int

b2d = foldl ...

b2d.hs

% ./b2d 1010

10

% ./b2d 11111100100

2020

%

Exercise 8-8
• Roman numerals use I, V, X, L, C, D and M symbols to represent numbers.

32

import System.Environment

main = do args <- getArgs

print $ r2a $ head args

r2a::String -> Int

r2a = ...

r2a.hs

% ./r2a MMXX

2020

% ./r2a CMXLIX

949

%

Symbols I V X L C D M

Value 1 5 10 50 100 500 1000

• Convert a roman numeral to a number by simply adding numbers which each symbol
represents.

• Can you add rules like IV is 4, IX is 9, XL is 40, XC is 90, and so on?

Exercise 8-9
• Convert an Arabic number (from 1 to 3999) to Roman.

33

import System.Environment

main = do args <- getArgs

putStrLn $ roman $ read $ head args

roman::Int -> String

roman

a2r.hs

% ./roman 1111

MCXI

% ./roman 1954

MCMLIV

% ./roman 1990

MCMXC

% ./roman 2020

MMXX

example

• Roman number consists of the following 7 letters:

Letter I V X L C D M

Number 1 5 10 50 100 500 1000

• The numbers of each letter are added.

• Starting from larger numbers.

• To avoid the repetition of 4 letters of the same one, the following subtraction rules are used:

String IV IX XL XC CD CM

Number 4 9 40 90 400 900

