FUNCTIONAL PROGRAMMING
NO.9 TYPE AND CLASS

Tatsuya Hagino
hagino@sfc.keio.ac.jp

Slide URL

https://vu5.sfc.kelo.ac.jp/slide/




Static Type Checking and Type Inference

- Type
- a set of values
- Bool ={ True, False }
« Char={'a",'b, ... }
- Int={..-2,-1,0,1,2,3, ..}

- Static type checking
- Haskell checks type of each expression when compile.
- static = compile time (v.s. dynamic = run time)
- Each expression has a proper type.

- Type inference
- Haskell tries to infer type of a given expression.
- Type inference may fail when information is not enough.

main = print f

main = print f
£ ngo" - f::Int

= read f = read "80"




Type Declaration

var,, var,, ..., var, ::. type

- Explicitly declaring type of variables
- Help type inference
- Express your intention = Easy to debug

defaultLines: :Int
ul, ol, 1li::String -> String

- Type declaration of an expression
- Declare type of an expression inside an expression

luckyNumber = (7 :: Int)
unluckyNumber = (13 :: Integer)




Polymorphic Type

- Type may have type variables

- Polymorphic type
- type with type variables

length :: [a] -> Int

zip :: [a] -> [b] -> [(a,b)]

- Type variables can be instantiated to any types.



Algebraic Data Type

- New type can be declared using data declaration.

data T v; v, ... = D, t,; t,, ... |
(Y D, tg; tg, ... |
DC<1t<... |

type variables \ types

new type constructor data constructors

- Avalue of type T can be created by D,, Dg, Dg,...

- Type name and data construct name need to start with a
capital letter.



Example

data Anchor = A String String

- A new type Anchor is declared.

- A IS the data constructor of type Anchor.
- A has two String fields.
A :: String -> String -> Anchor

href = A "http://www.sfc.keio.ac.jp/" "SFC Home Page"

- Use data construct pattern to access fields.

compileAnchor (A url label) = ...




Field Label

- Provide label to fields of data constructors.

data Anchor = A { aURL :: String, alabel :: String }

- Labels can be used in data construct patters to access
fields.

compileAnchor (A { aURL = u, alLabel =1 }) = ...

anchorUrl (A { aURL = u }) = u

- Field labels can be used as selectors to access fields.
- aURL :: Anchor -> String
- aLabel :: Anchor -> String

href = A "http://www.sfc.keio.ac.jp/" "SFC Home Page"

main = do print (aLabel href)




N S
Field Label (cont.)

- Field label can be used to create a new value by changing
some fields of an existing value.

data Anchor = A { aURL :: String, alabel :: String }
href = A "http://www.sfc.keio.ac.jp/" "SFC Home Page"

do print href
print (href { aLabel = "that" })

|

outputs A "http://www.sfc.keio.ac.jp/" "SFC Home Page"

main

outputs A "http://www.sfc.keio.ac.jp/" "that"



Creating Polymorphic Data Type

- Use type variable to create polymorphic data type

data Stack a = MkStack [a]
A =

type variable

MkStack [True, False] -—- Stack Bool

MkStack ['a', 'b', 'e¢'] -- Stack Char

MkStack ["aa", "bb"] -- Stack String




Enumeration Type

- Use | to create enumeration type

data OpenMode = ReadOnly | WriteOnly | ReadWrite

- Type OpenMode can be created by three data constructors.

- Type OpenMode has three values:
- ReadOnly
* WriteOnly
- ReadWrite

- Bool is an enumeration type.

data Bool = True | False




Union Type

PTItem

- Similar to union in C programming language

data PTItem

Param Int | Text String

- Values of PTItem are either Param with integer or Text

with String.

Text "daikon"
Param 5

isText: :PTItem -> Bool
isText (Text ) = True
isText (Param ) = False
text::PTItem -> String
text (Text s) = s

text (Param ) = " (param)"




Recursive Type @

Push

- Type declaration may refer itself.

data Stack a = Empty | Push a (Stack a)

- Creating values of Stack a

Emtpy

Push 1 Empty

Push 2 (Push 1 Empty)

Push 3 (Push 2 (Push 1 Empty))

- Accessing values of Stack a

isEmpty::Stack a -> Bool
isEmpty Empty = True
isEmpty (Push _ ) = False

top::Stack a -> a
top (Push x ) = x

pop::Stack a -> Stack a
pop (Push _s) = s




type Declaration

type T v, v, ... = ¢t
YP'I‘IZ S~

=
|

type constructor type variables type

- Creating a type by renaming an existing type
- No data constructor

type MyList a = [a]

-MyList alisjustan alias of [a].
- Any functions for [a] can be used for MyList a.



newtype Declaration

newtype % v, V, ... =

Dt
= \\

I \t
, type
e variables
type constructor yP data constructor

- Creating a type by using an existing type
- Has data constructor

newtype StackNT a = MKStackNT [a]

data StackNT a = MKStackNT [a]

- Similar to data declaration with only one data constructor

- Representation inside Haskell is simpler for newtype.
- StackNT a Is represented as just [a].



Type Class

- Restriction to polymorphism
- sort :: [a] -> [a]
- sort cannot sort arbitrary list, but only with order relation.

- Type class (or just class)
- set of types
- Atype in a class needs to implement certain class methods.

- Example: Ord class
- Values of a 0rd class type can be compared.

sort:: (Ord a) => [a] -> [a]

- (Ord a) => specifies the restriction to type variable a.
- a needs to be a type on Ord class.



Inheritance

- Classes may have inheritance relation.

- Example: Eq class
- Eq class is a super class of Ord class
- Eq class has (==) as a class method

super class
class methods: (==), ...

l Inherit

sub class
class methods: (<=), (>=), ...



Class Declaration

- Eq class
class Eq a where
(==), (/=) :: a -> a -> Bool -- declaration of class methods
==y = not (x /=y) -- default implementation of (==
X /=y = not (x ==y) -- default implementation of (/=)

- Ord class (Eq as super class)

class (Eq a) => (Ord a) where

compare :: a -> a -> Ordering
(<), (=), (3), (>=) :: a -> a -> Bool
min, max :ra ->a -> a
compare Xy | x ==y = EQ
| x <=y = LT
| otherwise = GT
X <=y = compare x y /= GT
X < y = compare x y == LT
X > y = compare x y /= LT
X > y = compare x y == GT
max xy | x <=y = y
| otherwise = x
min xy | x <=y = x
| otherwise = y




Instance Declaration

- Declaring a type is an instance of a class

data Anchor = A String String

instance Eq Anchor where
(Aul) == (Au'l') = (u==1u') && (1 =1")

- deriving declaration

- If the implementation is natural and clear, let system implements them.
- Available for: Eq, Ord, Enum, Bounded, Show, Read

data Anchor = A String String deriving (Eq, Show)




Important Classes

Show

All except
IO, (->)

Read

All except
IO, (->)

Eq
All except
I0, (->)

Ord
All except 10,
IOError, (->)

Num
Int, Integer,
Float, Double

Bounded
Int, Char, Bool, (),
Ordering, tuples

Functor
I0, [], Maybe

Enum

(), Bool, Char,
Ordering, Int, Integer,
Float, Double

Real
Int, Integer,
Float, Double

Fractional
Float, Double

Monad
IO, [], Maybe

RealFrac
Float, Double

Integral
Int, Integer

Floating
Float, Double

MonadPlus
I0, [], Maybe

RealFloat
Float, Double




Example: Rational Number

- A rational number consists of two numbers: numerator and denominator
- Declare the data type as a pair of integers

data Rat = Rat Integer Integer

main = print $§ Rat 2 3

- Cannot print by default.
- printis only available when show method is defined.
 print::Show a => a -> IO ()

data Rat = Rat Integer Integer deriving Show

main = print $§ Rat 2 3

- This works, but it shows Rat 2 3' as it is.
- Define show method:

data Rat = Rat Integer Integer

instance Show Rat where
show (Rat x y) = show x ++ "/" ++ show y

main = print $ Rat 2 3




Rational Number (cont.)

- Addition and multiplication of rational numbers?

- Define arithmetic functions
- Use data constructor pattern

data Rat = Rat Integer Integer

instance Show Rat where
show (Rat x y) = show x ++ "/" ++ show y

add: :Rat -> Rat -> Rat
add (Rat x y) (Rat uv) =Rat (x *u+y *v) (y * v)

main = print $ add (Rat 1 2) (Rat 1 6)




Rational Number (cont.)

- Would like to use (+) and (*)
- Make It an instance of Num class.

class Num a where
(+) :: a ->a -> a
(*) :: a ->a ->a
negate :: a -> a -—or (-):: a ->a ->a
abs :: a -> a
signum :: a -> a -- abs x * signum x == x needs to hold
fromInteger :: Integer -> a

- Implement above 6 methods to make Rat an instance of Num class.

instance Num Rat where
(Rat x y) + (Rat u v) Rat (x *u +y *v) (y * v)
(Rat x y) * (Rat u v) Rat (x * u) (y * v)
negate (Rat x y) = Rat (- x) y
abs (Rat x y) = Rat (abs x) (abs y)
signum (Rat x y) | x == fromInteger 0
| x *y >0 fromInteger 1
| otherwise fromInteger (-1)
fromInteger x = Rat x 1

main = print $ Rat 1 2 + Rat 1 6




Exercise 9-1

rat.hs

import System.Environment
data Rat = Rat Integer Integer

instance Show Rat where
show (Rat x y) = show x ++ "/" ++ show y

instance Num Rat where

main = do args <- getArgs
let x = read (args !! 0)
let y = read (args !! 1)
let u = read (args !! 2)

let v = read *args !'! 3)
print $ Rat x y + Rat u v % ./rat 2 3 4 5
print $ Rat x y - Rat u v 22/15
print $ Rat x y * Rat u v -2/15
8/15
5/6

_ _ _ $ ./rat 1 3 2 3
- Complete the implementation of rational number: | 1

. . . 3 1 _1 3
- Reduce fractions to irreducible ones: - 73 2/3
: - 2 -2
- Make denominators always positive: ariindre 1/2
B $

- If the result is integer, print is as integer: % - 2
- Make is an instance of Fractional.




