B TOI Sy

gom BELHISXR

!

iy E

hagino@sfc.keio.ac.jp

Slide URL

https://vub.sfc.keio.ac.jp/slide/

I ———————
BORRE RS

¥

- [EDESE
- Bool = { True, False }
- Char={'a",'b', ... }
- Int={...-2,-1,0,1,2,3, ... }

- BERE
- HaskelllZa /A ILEIZKDEZHRET S
- FRRY = a2 NA)LEF (v.s. BB = ZE1THF)
- ITRTOXIFELWVEZF>TLWSARELHS

B
- HaskelllZxX DA Z#EiRT 5
cNFRAT T+ HEIGEICITRMHRIIELNTHIELHS

main = print £

main = print £
II" f::Int
f "80" n

= read f = read "80"

var,, var,, ..., var, ::. type

- EHOBEHRHVICEE TS
- B RA BT S

- TATSYDERERBET S = T/AvTLOI<AGS

defaultLines: :Int
ul, ol, 1li::String -> String

-HXDEES
- ADOPFT, ADBZEETH

luckyNumber = (7 :: Int)
unluckyNumber = (13 :: Integer)

% $8#4 (Polymorphic)
MERERERTEN DD

. %*ﬁ #7534 (Polymorphic type)

THEEAT-E
length :: [a] -> Int
zip :: [a] -> [b] -> [(a,b)]

BEMIEDLHLGRIZEIEYS5

.
KT —2E

-dataBEEZE>THLWEZERT HEMNTES.

data T v, v, ... =D, t,; t,, ... |
| D, tg; tg, ... |
Dcil t< |
R 25 4 \\ i

i D S S T—ARAAVANS YA

- BT DEFT—22aVANS9%5D,, Dg, Dg,...|2&>THELNDS.

- BB T—AAV AT IRI AR FETIROELTIIUNMTFARLY.

3

data Anchor = A String String

- #HiLULVE Anchor 2 &

- A M Anchor D T—ARIAVIFU4
- Al¥2DM string 74—ILEZHED
A :: String -> String -> Anchor

href = A "http://www.sfc.keio.ac.jp/" "SFC Home Page"

- T—ARAVANSIRINEI—UIZEKHDTIT4—ILRIZTOERT S

compileAnchor (A url label) = ...

T4—ILESXN)L

- T—RAVANSOBDITA—ILRIZSRILE[FTBIENTES

data Anchor = A { aURL :: String, alabel :: String }

s IRNIWEEL>TIA—ILEETOERT S

compileAnchor (A { aURL = u, alLabel =1 }) = ...

anchorUrl (A { aURL = u }) = u

« T4—ILESARIEELIFELTFIATES
- aURL :: Anchor -> String
- aLabel :: Anchor -> String

href = A "http://www.sfc.keio.ac.jp/" "SFC Home Page"

main = do print (aLabel href)

J4—ILESR)L (DDE)

c TA4—ILESRNILZFEDE, FEITHIED—EDT4—ILED
EZxZEL-EZESENTES

data Anchor = A { aURL :: String, alabel :: String }

href = A "http://www.sfc.keio.ac.jp/" "SFC Home Page"

main do { print href;

print (href { aLabel = "that" }) }

\

[A "http://www.sfc.keio.ac.jp/" "SFC Home Page" & H A

[A "http://www.sfc.keio.ac.jp/" "that"|ZHH

.
ZHNT 28T ER

BB EEIETEMRNT —FEZERT HENTED

data Stack a = MkStack [a]
/

A
\
R
MkStack [True, False] -— Stack Bool
MkStack ['a', 'b', 'e¢'] -- Stack Char

MkStack ["aa", "bb"] -—- Stack String

51|25 & (Enumeration Type)
BIERE | TRETHIENTES

data OpenMode = ReadOnly | WriteOnly | ReadWrite

- OpenMode B DEIXIIIDDT—HAIAV RISV ATHESIENTES.

- OpenMode (I3 DDIEZFHD:
- ReadOnly
* WriteOnly
- ReadWrite

- Bool (5|5 HY

data Bool = True | False

3 AH{K (Union)

- wl

- CEEEM union ERILELDICHAREEEZET HEMNTES

data PTItem = Param Int | Text String

- PTItem D{EIL Param EBHH, Text EXFIDELDL

MTHS

Text "daikon"
Param 5

isText: :PTItem -> Bool
isText (Text) = True
isText (Param) = False
text: :PTItem -> String
text (Text s) = s

text (Param) = " (param)"

B IF# (Recursive) 752

-BNEEDRTERSEHIFRMICED

Push

data Stack a = Empty | Push a (Stack a)

- Stack a MDiE

Emtpy

Push 1 Empty

Push 2 (Push 1 Empty)

Push 3 (Push 2 (Push 1 Empty))

- Stack a DEZSHET S

isEmpty::Stack a -> Bool
isEmpty Empty = True
isEmpty (Push _) = False

top::Stack a -> a
top (Push x) = x

pop: :Stack a -> Stack a
pop (Push s) = s

S S
type &

1]||\|

type T v, v, ... = ¢t
YP A 1&2 \

|
—_ 1] I % |
BaURhSH4 O EEH =

 EET AR ERIE A ETH LA S
T—RAVANZI2IEGL

type MylList a = [a]

-MyList ald [a] &RIC
- [a] 12X HBE8X MyList a [TESZEMNTES

Ty

newtype &

newtype T v, v, ... D t
YP /I\ 1R2 \\

| \t
: type
e variables
type constructor VP data constructor

T ABICERIE AL THLNEEES
- T—RAVANS AN BB

newtype StackNT a = MKStackNT [a]

data StackNT a = MKStackNT [a]

- T—RAVARSIAMN—DEFD data EE EIFEAERLC
- newtype D AMNANEIRIZH Hid
- StackNT a [XHEHIZ [a] ELTREINTLS

RS
- ZHGEOFRIZHFIZ TS
- sort :: [a] -> [a]

- sort [FIREEDEDIAMEHUVEZDIENTETEHDITTIHEL. EFE
{BOEELNEUNFARLY.

- BIOSR(EIZ, 97X)
- BIDES
- BHSZDOETAREFDERHISADITAAIYRERET ENENHS.

- f5l: ord V5 X
- ord VS RIZETHAEDEIXLLE T HEMNTES

sort::(OniW [a] -> [a]

- (0rd a) => [FEREH a [T 5FHFZEMATLNS
- a l& Ord 5 RIZET BETHLELIFAL

. B

- DS AMICITMAR ZRAH D

- f5l: Eq 95X
- Eq 5R1& Ord 95 ADA—/8—9F5 R
- Eq 92 X(& (==) BNITARA A YK

A—IN—DF X
DSRAAIYR: (==), ...

HITUS5X
DSRAAIYR: (=), (>=), ...

class8§ &

-Eq V7R
class Eq a where {
(==), (/=) :: a -> a -> Bool -- J9SRAAYYFDEE
X ==y = not (x /=y) —— (=) IS RAYRDT IA—IL R
X /=y = not (x ==y) —— (/=) ISARAIYRDT IA—IL R
}

- 0rd VS R(EQ VT RTZARA—IN—JSRETD)

class (Eq a) => (Ord a) where {
compare :: a -> a -> Ordering
(<), (=), (), (>=) :: a -=> a -> Bool
min, max i a ->a -> a
compare Xy | x ==y = EQ
| x <=y = LT
| otherwise = GT
X <=y = compare x y /= GT
X < y = compare x y == LT
X >y = compare x y /= LT
X > y = compare x y == GT
max xy | x <=y = vy
| otherwise = x
min xy | x <=y = x
| otherwise = vy
}

instance&® =

- BNBHLISRITBLTWSIEZES

data Anchor = A String String

instance Eq Anchor where ({
(Aul) == (Au'l') = (u=1u') && (1L =1")
}

-deriving B
c DSAXYRDNEFMGIGRIZIE AT LICBEFEEIELEEHTES
- Eq, Ord, Enum, Bounded, Show, Read

data Anchor = A String String deriving (Eq, Show)

LMDODDHITA

Eq Show Read
10, (->) L5+ I0, (->) KI5t 10, (->) Ll4t
Ord . Num Bounded

I0, IOError, (->) L4t Int, Integer,
Float, Double

Int, Char, Bool, (),
Ordering, tuples

Functor
IO, [], Maybe

Enum

(), Bool, Char,
Ordering, Int, Integer,
Float, Double

Real
Int, Integer,
Float, Double

Fractional
Float, Double

Monad
IO, []1, Maybe

RealFrac
Float, Double

Integral
Int, Integer

Floating
Float, Double

MonadPlus
IO, [], Maybe

RealFloat
Float, Double

. B
Bl 5324

s DRI FENBD2ODEHMSTETLNS
 BHORTELTT—AREEE

data Rat = Rat Integer Integer

main = print $§ Rat 2 3

- print § 5 &IXTEGLY
- print [& show AVYYRMNEZIN TESTIEULMFEL
- print::Show a => a -> IO ()

data Rat = Rat Integer Integer deriving Show

main = print $§ Rat 2 3

- CNTERULWDWEDOERTMNRat 2 3JDFFEFTERLLLALY
- B% T show AYVYKRZEFEET S

data Rat = Rat Integer Integer

instance Show Rat where {
show (Rat x y) = show x ++ "/" ++ show y

}

main = print $§ Rat 2 3

DE(DDE)
DHDELEDOENTEIXESTNIXKLN?

A E”/ﬁﬁmlﬁ}‘&%E%
« T—RAVANZOANFI—%FIA

data Rat = Rat Integer Integer

instance Show Rat where {
show (Rat x y) = show x ++ "/" ++ show y

}

add: :Rat -> Rat -> Rat
add (Rat x y) (Rat u v) = Rat (x * u + y * v)

main = print $ add (Rat 1 2) (Rat 1 6)

(y * v)

S - N
PE(DDE)

(+) Jco (*) ZfELVF=0N
s Num7S5RADAVAIVAIZT S

class Num a where {

(+) :: a ->a -> a

(*) :: a ->a ->a

negate :: a -> a -- HBWE (-):: a ->a -> a

abs :: a -> a

signum :: a -> a -- abs x * signum x == x Fimlz9 &
fromInteger :: Integer -> a

LEE6DZEERL, RatZNUMISADA VARV RIZT S

instance Num Rat where {
(Rat x y) + (Rat u v) Rat (x *u +y *v) (y * v)
(Rat x y) * (Rat u v) Rat (x * u) (y * v)
negate (Rat x y) = Rat (- x) y
abs (Rat x y) = Rat (abs x) (abs y)

signum (Rat x y) | x == = fromInteger 0
| x * y > 0 = fromInteger 1
| otherwise = fromInteger (-1)

fromInteger x = Rat x 1

main = print $§ Rat 1 2 + Rat 1 6

B
R MTE9—1

rat.hs
import System.Environment

data Rat = Rat Integer Integer

instance Show Rat where {
show (Rat x y) = show x ++ "/" ++ show y

}

instance Num Rat where {

}

main = getArgs >>= \args -> test $ map read args
where test (x:y:u:v:) =
(print $ Rat x y + Rat u v) >>
(print $ Rat x y - Rat u v) >>
(print $ Rat x y * Rat u v)

- RO REEELDBZETERIEEI0
- DHOFHEFZREIL/ERN D BTG oTLVELY
- DEERTUEEZIZHBICEADEMNH DD ITH-EBLLN
- FTERENBIRIEICEIDEL N THCEHTRRLEZL

	関数型プログラミング�第9回　型とクラス
	静的型検査と型推論
	型宣言
	多相的（Polymorphic）
	代数的データ型
	例
	フィールドラベル
	フィールドラベル（つづき）
	多相的データ型を定義
	列挙型（Enumeration Type）
	共用体（Union）
	再帰的（Recursive）な型
	type 宣言
	newtype 宣言
	型クラス
	継承
	class宣言
	instance宣言
	いくつかのクラス
	例：分数
	分数（つづき）
	分数（つづき）
	練習問題9－1

