
関数型プログラミング

第9回 型とクラス

萩野 達也

hagino@sfc.keio.ac.jp

1

https://vu5.sfc.keio.ac.jp/slide/
Slide URL

静的型検査と型推論
• 型

• 値の集合
• Bool = { True, False }
• Char = { 'a', 'b', ... }
• Int = { ... -2, -1, 0, 1, 2, 3, ... }

2

main = print f

f = read "80"

main = print f

f::Int
f = read "80"

• 静的型検査
• Haskellはコンパイル時に式の型を検査する
• 静的 = コンパイル時 （v.s. 動的 = 実行時）
• すべての式は正しい型を持っている必要がある

• 型推論
• Haskellは式の型を推論する

• 情報が不十分な場合には型推論は失敗することもある

型宣言

• 変数の型を明示的に宣言する
• 型推論を助ける

• プログラマの意図を表現する ⇒ デバッグしやすくなる

3

var1, var2, ..., varn :: type

luckyNumber = (7 :: Int)
unluckyNumber = (13 :: Integer)

• 式の型宣言
• 式の中で，式の型を宣言する

defaultLines::Int
ul, ol, li::String -> String

多相的（Polymorphic）
• 型は型変数を含むことがある

4

length :: [a] -> Int

zip :: [a] -> [b] -> [(a,b)]

• 型変数はどのような型にもなりうる

• 多相的な型（Polymorphic type）
• 型変数を含んだ型

代数的データ型

• data宣言を使って新しい型を定義することができる．

5

data T v1 v2 ... = DA tA1 tA2 ... |
DB tB1 tB2 ... |
DC tC1 tC2 ... |
...

型コンストラクタ

型変数

データコンストラクタ

型

• 型T の値はデータコンストラクタDA, DB, DC,...によって作られる．

• 型名，データコンストラクタは大文字で始めなくてはいけない．

例

• 新しい型 Anchor を定義

6

data Anchor = A String String

href = A "http://www.sfc.keio.ac.jp/" "SFC Home Page"

• データコンストラクタパターンによってフィールドにアクセスする

compileAnchor (A url label) = ...

• A が Anchor のデータコントラクタ
• A は2つの String フィールドを持つ
• A :: String -> String -> Anchor

フィールドラベル
• データコンストラクタのフィールドにラベルを付けることができる

7

data Anchor = A { aURL :: String, aLabel :: String }

• ラベルを使ってフィールドをアクセスする

compileAnchor (A { aURL = u, aLabel = l }) = ...

anchorUrl (A { aURL = u }) = u

• フィールドラベルはセレクタとして利用できる
• aURL :: Anchor -> String
• aLabel :: Anchor -> String

href = A "http://www.sfc.keio.ac.jp/" "SFC Home Page"

main = do print (aLabel href)

フィールドラベル（つづき）

• フィールドラベルを使うと，存在する値の一部のフィールドの
値を変更した値を作ることができる

8

data Anchor = A { aURL :: String, aLabel :: String }

href = A "http://www.sfc.keio.ac.jp/" "SFC Home Page"

main = do { print href;
print (href { aLabel = "that" }) }

「A "http://www.sfc.keio.ac.jp/" "that"」を出力

「A "http://www.sfc.keio.ac.jp/" "SFC Home Page"」を出力

多相的データ型を定義

• 型変数を使うことで多相的データ型を定義することができる

9

data Stack a = MkStack [a]

型変数

MkStack [True, False] -- Stack Bool

MkStack ['a', 'b', 'c'] -- Stack Char

MkStack ["aa", "bb"] -- Stack String

列挙型（Enumeration Type）
• 列挙型を | で定義することができる

10

data OpenMode = ReadOnly | WriteOnly | ReadWrite

• OpenMode型の値はは3つのデータコンストラクタで作ることができる．

data Bool = True | False

• OpenMode は3つの値を持つ:
• ReadOnly
• WriteOnly
• ReadWrite

• Boolは列挙型

共用体（Union）
• C言語の union と同じように共用体を定義することができる

11

data PTItem = Param Int | Text String

• PTItemの値は Param と整数か，Text と文字列のどちら

かである

Param Int
Text
String

PTItem

Text "daikon"
Param 5

isText::PTItem -> Bool
isText (Text _) = True
isText (Param _) = False

text::PTItem -> String
text (Text s) = s
text (Param _) = "(param)"

再帰的（Recursive）な型
• 型の宣言の中で自分を再帰的に使う

12

data Stack a = Empty | Push a (Stack a)

Stack aEmpty a
Push

• Stack aの値

Emtpy
Push 1 Empty
Push 2 (Push 1 Empty)
Push 3 (Push 2 (Push 1 Empty))

• Stack aの値を参照する
isEmpty::Stack a -> Bool
isEmpty Empty = True
isEmpty (Push _ _) = False

top::Stack a -> a
top (Push x _) = x

pop::Stack a -> Stack a
pop (Push _ s) = s

type 宣言

• 存在する型に名前を付けることで新しい型を作る
• データコンストラクタはなし

13

type T v1 v2 ... = t

型コンストラクタ 型変数 型

type MyList a = [a]

• MyList aは [a] と同じ

• [a]に対する関数は MyList aに使うことができる

newtype 宣言

• 存在する型に名前を付けることで新しい型を作る
• データコンストラクタがある

14

newtype T v1 v2 ... = D t

type constructor type variables
data constructor

newtype StackNT a = MKStackNT [a]

data StackNT a = MKStackNT [a]

• データコンストラクタが一つだけの data 宣言とほとんど同じ
• newtypeの方が内部表現が単純

• StackNT a は単純に [a] として表現されている

type

型クラス
• 多相的な型の利用に制約を付ける

• sort :: [a] -> [a]
• sortは任意の型のリストを並び替えることができるわけではない．順序関
係がないといけない．

15

• (Ord a) => は型変数 a に対する制約を加えている
• a は Ord クラスに属する型でないといけない

sort::(Ord a) => [a] -> [a]

• 型クラス（単に，クラス）
• 型の集合
• 型クラスの属する型はその型クラスのクラスメソッドを実装する必要がある．

• 例: Ord クラス
• Ord クラスに属する型の値は比較することができる

継承

• クラス間には継承関係がある

16

Eq クラス

Ord クラス

継承

スーパークラス
クラスメソッド: (==), ...

サブクラス
クラスメソッド: (<=), (>=), ...

• 例: Eq クラス
• Eq クラスは Ord クラスのスーパークラス

• Eq クラスは (==) がクラスメソッド

class宣言
• Eq クラス

17

class Eq a where {
(==), (/=) :: a -> a -> Bool -- クラスメソッドの宣言

x == y = not (x /= y) -- (==)クラスメソッドのデフォールト実装
x /= y = not (x == y) -- (/=)クラスメソッドのデフォールト実装

}

• Ord クラス(Eq クラスをスーパークラスとする)
class (Eq a) => (Ord a) where {
compare :: a -> a -> Ordering
(<), (<=), (>), (>=) :: a -> a -> Bool
min, max :: a -> a -> a

compare x y | x == y = EQ
| x <= y = LT
| otherwise = GT

x <= y = compare x y /= GT
x < y = compare x y == LT
x >= y = compare x y /= LT
x > y = compare x y == GT
max x y | x <= y = y

| otherwise = x
min x y | x <= y = x

| otherwise = y
}

instance宣言

• 型があるクラスに属していることを宣言

18

data Anchor = A String String

instance Eq Anchor where {
(A u l) == (A u' l') = (u == u') && (l == l')

}

• deriving宣言
• クラスメソッドが単純な場合にはシステムに自動実装させることもできる

• Eq, Ord, Enum, Bounded, Show, Read

data Anchor = A String String deriving (Eq, Show)

いくつかのクラス

19

Eq
IO, (->)以外

Show
IO, (->)以外

Read
IO, (->)以外

Ord
IO, IOError, (->)以外

Num
Int, Integer,
Float, Double

Bounded
Int, Char, Bool, (),
Ordering, tuples

Enum
(), Bool, Char,

Ordering, Int, Integer,
Float, Double

Real
Int, Integer,
Float, Double

Integral
Int, Integer

Fractional
Float, Double

Floating
Float, Double

RealFrac
Float, Double

RealFloat
Float, Double

Functor
IO, [], Maybe

Monad
IO, [], Maybe

MonadPlus
IO, [], Maybe

例：分数
• 分数は分子と分母の2つの整数からできている

• 整数のペアとしてデータ型を宣言

20

data Rat = Rat Integer Integer

main = print $ Rat 2 3

• print することはできない
• printは show メソッドが定義されてなくてはいけない
• print::Show a => a -> IO ()

data Rat = Rat Integer Integer deriving Show

main = print $ Rat 2 3

• これでも良いが分数の表示が「Rat 2 3」のままでそれらしくない
• 自分で show メソッドを実装する

data Rat = Rat Integer Integer

instance Show Rat where {
show (Rat x y) = show x ++ "/" ++ show y

}

main = print $ Rat 2 3

分数（つづき）
• 分数の足し算や掛け算はどうすればよい？

• 四則演算の関数を定義
• データコンストラクタパターンを利用

21

data Rat = Rat Integer Integer

instance Show Rat where {
show (Rat x y) = show x ++ "/" ++ show y

}

add::Rat -> Rat -> Rat
add (Rat x y) (Rat u v) = Rat (x * u + y * v) (y * v)

main = print $ add (Rat 1 2) (Rat 1 6)

分数（つづき）
• (+)や(*)を使いたい
• Numクラスのインスタンスにする

22

class Num a where {
(+) :: a -> a -> a
(*) :: a -> a -> a
negate :: a -> a -- あるいは (-):: a -> a -> a
abs :: a -> a
signum :: a -> a -- abs x * signum x == x を満たすこと
fromInteger :: Integer -> a

}

• 上記6つを実装し，RatをNumクラスのインスタンスにする
instance Num Rat where {
(Rat x y) + (Rat u v) = Rat (x * u + y * v) (y * v)
(Rat x y) * (Rat u v) = Rat (x * u) (y * v)
negate (Rat x y) = Rat (- x) y
abs (Rat x y) = Rat (abs x) (abs y)
signum (Rat x y) | x == 0 = fromInteger 0

| x * y > 0 = fromInteger 1
| otherwise = fromInteger (-1)

fromInteger x = Rat x 1
}

main = print $ Rat 1 2 + Rat 1 6

練習問題9－1

• 次の点を修正し分数を完成させなさい
• 分数の計算結果が既約分数になっていない

• 分数を表示したときに分母に負の数があるのはみっともない

• 計算結果が整数値になるのなら分数でなく整数で表示したい

23

import System.Environment

data Rat = Rat Integer Integer

instance Show Rat where {
show (Rat x y) = show x ++ "/" ++ show y

}

instance Num Rat where {
...

}

main = getArgs >>= ∖args -> test $ map read args
where test (x:y:u:v:_) =

(print $ Rat x y + Rat u v) >>
(print $ Rat x y - Rat u v) >>
(print $ Rat x y * Rat u v)

rat.hs

	関数型プログラミング�第9回　型とクラス
	静的型検査と型推論
	型宣言
	多相的（Polymorphic）
	代数的データ型
	例
	フィールドラベル
	フィールドラベル（つづき）
	多相的データ型を定義
	列挙型（Enumeration Type）
	共用体（Union）
	再帰的（Recursive）な型
	type 宣言
	newtype 宣言
	型クラス
	継承
	class宣言
	instance宣言
	いくつかのクラス
	例：分数
	分数（つづき）
	分数（つづき）
	練習問題9－1

