B TOI Sy

$£10E@ EFF

!

iy E

hagino@sfc.keio.ac.jp

Slide URL

https://vub.sfc.keio.ac.jp/slide/

2
EFEDOUSX

class Monad m where {
(>>=) ::ma -> (a->mb) ->mb ;
return :: a -> m a

}

- Monad 92 ADA2VARZVANEFF
- 2DDEBERETLIVELHD.
- (>>=) [F/XA 2K (bind) EFFEIEN S

- 22DBERTIRDBANZ B L TVWORBENHD.

- TFFA|
1. (return x) >>= £ = f x
2. m >>= return =m

3. (m >>= f) >>=g m >>= (\x -> £ x >>= q)

L S
MaybeE€F~

data Maybe a = Nothing | Just a deriving (Eq, Ord)

- [Maybe al|ldkBZEHRS>T=HIZL{ALGND.
- Tgust x|[XRNLI-IGEDEZTRLTLAS.
- INothing 3K ZERLTLS.

-f:: a -> Maybe b
- £ [ITb]DEDEZRT ML
- b DB DEZFRT ZEMNTEHIMEEIZEINothing |FIRT .

B

lookup:: (Eq a) => a -> [(a, b)] -> Maybe b

instance Monad Maybe where ({
(Just x) >>= £ f x ;
Nothing >>= £ Nothing ;
return x Just x

}

lookup

lookup:: (Eq a) => a -> [(a,b)] -> Maybe b

- lookup [F2DMD5|#%xE5:
c AVTYIR
- ERYZRR(ATILD)RR)

- lookup [ERDIEZERT :
‘ %é%hf:»ryv‘-“vam97"»73%*»7‘:%%l:li, XfI6d BiEFJust x 1&ELT
XX 9 .
- ST BHATILDEMNS12HEIZIE, [Nothingl%iRY .

lookup "three" [("one", 1), ("two", 2), ("three", 3)] = Just 3
lookup "four" [("one", 1), ("two", 2), ("three", 3)] = Nothing

lookup "path" [("type", "cgi"), ("path", "/var/app")] = Just "/var/app"
lookup "url" [("type", "cgi"), ("path", "/var/app")] = Nothing

lookupZ A EHE D

config :: [(String, [(String, String)])]
config =
[("database", [("path", "/var/app/db"), ("encoding", "euc-jp")1]),
("urlmapper", [("cgiurl", "/app"), ("rewrite", "True")]),
("template", [("path", "/var/app/template")]) 1]

- lookupDFERIZE5ZlookupZE FHLT-0Y.
- PIDIOKUpMETILE=MNEINEERTHIVNELHS.

Just Just
config —>| lookup "database" @ lookup "path" @

Nothing Nothing

case (lookup "database" config) of {
Just entries -> lookup "encoding" entries ;
Nothing -> Nothing

}

L
EFFE|Z{ED

instance Monad Maybe where ({

(Just x) >=f = f x ;
Nothing >>= £ = Nothing ;
return x = Just x

}
- Maybe W EFFTHLHIZEMG:
case (lookup "database" config) of {

Just entries -> lookup "encoding" entries ;
Nothing -> Nothing }

N

lookup "database" config >>= lookup "encoding"

N

return config >>= lookup "database" >>= lookup "encoding"

S BleE10—1

- ROTAYTILIF x 22TESH, BHTHEVERFICETERKT 5.

div2::Int -> Maybe Int
div2 x = if even x then Just (x "div 2)
else Nothing

- 131
* div2 4 = Just 2
- div2 3 = Nothing

- div2 £3EFESCLICEHT, HALNEHFESTESH, 8TENAL
SRICITRERT SR dive ZEELGSL.
- div8 24 = Just 3
- div8 20 = Nothing

div8::Int -> Maybe Int
div8 x = ...

ListEF

- MaybeE®7FF
- RBGELTENFELLGWMGEZROZENTES.

- ListE+F
O EOHMMNIEZ YRS =YUT BiEE5%HKD.

<

T~

B0 ¢

.
ListEFF

instance Monad [] where {
xs >>= f = concat $ map £ xs ;
return x = [x]

}

- 151

- T7AMIVBDRHA
- expandCharClass "img[012] .png"

=> [" :ngO . pngn , " :|.mg1 . pngn , " :|.mg2 . pngn]

+ expandAltWorlds "img. {png, jpg}"
= ["img.png", "img.jpg"]

- 220 EABABEEAEDHED

- expandPattern: :String -> [String]
- expandPattern pattern
= expandCharClass pattern >>= expandAltWords

- expandPattern "img[012]. {png,jpg}"

=> [" 1mg0 .png" , nimgo . jpgn , " 1mg.1 . pngn , nimgl . jng ,
"img2.png", "img2.]jpg"]

.
S MBeE10—2

. fcg_glicate FEZoNT-ERFEZoN-BIHIAE—LI=JR MR EIE

- replicate :: Int -> a -> [a]
- replicate 31 = [1,1,1]
- replicate 5 'a' = "aaaaa"

- replicate Z{#>T, GEAONT-JARMDENETNDEREZ2EICLTRY
B§%% double ZListEFFZ&{E>TEZ LG
- double [1,2,3] = [1,1,2,2,3,3]
- double "SFC" = "SSFFCC"

double.hs

double xs = ...

.
IOEFF

- AHAIZIFIEELNHD.
- e.g. FAVTMIANDHIIZH DT S.
- e.g. "Sunday"#"Monday"D#HilZH 19 3.

- T10 alDEIXAE DTV 3aVFRLTWS.

N
I0 a before after
input/output input/output

- T >>=) 18 &W T return] I AT LTEEINTLS.
- x >>=y
- Toavix | hBIFENSGEIZIK, ZDERET I aVIyIDET.
- ZD=®, T AU ET OV Iy IDHIZITOHENHS.

.
IOEFH D4

cat.hs

main = getContents >>= putStr

- getContents: :IO0 String
- AL ARNTRT I3y
- putStr::String -> IO ()
- XFHEAVY—ILICH AT ET I Iy

- do WZEEIERDLAITELIEDLTES.

main = do { cs <- getContents ;
putStr cs }

EFREX

-do =X

>>= e,

do

e, X }

>>= \x -> e,

do

{ x <- e;;

>>= e, >>= e,

do

y <- e, x;
e; y }

>>= \x -> e,
>>= \y -> e

do

y <- &y
e; }

. L S
IOEF & (>>)

- RDdoRK(F (>>=) ZE-TESTEIT LA TES.

do { putStrLn "Hello, World!";
putStrLn "Hello, again!!!" }

~>

putStrLn "Hello, World!" >>= \x -> putStrLn "Hello, again!!!"

- 27D E) putStrLn (isﬁéfﬂ x {EHELVD T, Monad DT R A
YUk (>>) ZEITENTES.

putStrLn "Hello, World!" >> putStrLn "Hello, again!!!"

class Monad m where {
(>>)::ma -=>mb ->mb ;
£f > g=£f>>= (\x -> g)
}

{1(1)

nameNoDo: : IO ()
nameNoDo = putStr "What is your first name? " >>
getLine >>= \first ->
putStr "And your last name? " >>
getLine >>= \last ->
let full = first ++ " " ++ last
in putStrLn ("Please to meet you, " ++ full ++ "!")

nameDo: :IO0 ()

nameDo = do { putStr "What is your first name? "
first <- getLine;
putStr "And your last name? ";
last <- getLine;
let full = first ++ " " ++ last;
putStrLn ("Please to meet you, " ++ full ++ "!") }

S O
{5 (2)

- lookup z _EIZ1T35 6%, Ao TELTHS.

case (lookup "database" config) of {
Just entries -> lookup "encoding" entries ;

Nothing -> Nothing }

lookup '"database" config >>= lookup "encoding"

N

do { entries <- lookup '"database" config ;
lookup "encoding" entries }

fEE MBeB10—3

- FHERIE10—10) div8 # do RZEALVTESTH S0,

div8.hs

import System.Environment

div2::Int -> Maybe Int
div2 x = if even x then Just (x 'div 2)
else Nothing

div8::Int -> Maybe Int
div8 x = do { y <- div2 x;

.
LI 4

}

main = do { args <- getArgs;
print $ div8 $ read $ head args }

.
|JANAEIZRECEListEF <

- HaskelllZIXEF|ZY AN ERELHYET .
- [x*2 | x <- [1..5]] = [2,4,6,8,10]
| (X,Y) | x <- [11211 y <- [3/4] 1
= [(1,3),(1,4),(2,3),(2,4)]

- CNILListEF FDHEXRIBEX (syntax sugar) T .

4 I
[[x * 2 | x <- [1..5]]} [::::$> [1..5] >>= \x -> return(x * 2)
\ J
4 I
[:::::D do { x <- [1..5];
return (x * 2) }
\ J
-
[(X,Y) I x <- [112] 14 [1,2] >>= \x ->
[y <- [3,4] 1] } l:::::$> [3,4] >>= \y -> return (x,y)
- J
(do { x <- [1,2]; h
E— y <- [3,41;
9 return (x,y)}

N B
BRZEOTHLD

c ROSHLGHEGHABEDTSEHBEREZERLTHED.

1+2+3+4 = 10
12+3%45 = 147

- AN, AASNT=XFFIZF 4] (token) D AMIEHRT 5.
12+3*%45 ‘

* 45

3

12
#F

.
FAET—E3RELTESE

data Token = Num Int | Add | Sub | Mul | Div

- FAIIHFEMNGES (41BFR) DELLH.

tokens: :String -> [Token]
tokens [] = []
tokens ('+':cs)
tokens ('-':cs)

Add: (tokens cs)

Sub: (tokens cs)

tokens ('*':cs) Mul: (tokens cs)

tokens ('/':cs) Div: (tokens cs)

tokens (c:cs) | isDigit ¢ = let (ds,rs) = span isDigit (c:cs)
in Num(read ds) : (tokens rs)

- span [FURAMDFEEMNEHZR/-ITEH D ZUIYVH IR
- span :: (a -> Bool) -> [a] -> ([al, [al)
- span (< 3) [1,2,3,4,1,2,3,4] = ([1,2]1,13,4,1,2,3,4])
- span (< 9) [1,2,3] = ([1,2,3],[])
- span (< 0) [1,2,3] = ([],[1,2,3])

. S
B ME10—4

- TokenH IE LLEISIT RARLE SO,

token.hs
import Data.Char

data Token = Num Int | Add | Sub | Mul | Div deriving Show

tokens: :String -> [Token]

tokens [] = []

tokens ('+':cs) = Add: (tokens cs)

tokens ('-':cs) Sub: (tokens cs)

tokens ('*':cs) Mul: (tokens cs)

tokens ('/':cs) = Div: (tokens cs)

tokens (c:cs) | isDigit c¢ = let (ds,rs) = span isDigit (c:cs)
in Num(read ds) : (tokens rs)

main = do { cs <- getContents;
putStr $ unlines $ map (unwords . (map show) . tokens) $ lines cs }

- RITH1

% stack runghc token.hs
1+2*3
Num 1 Add Num 2 Mul Num 3

. B
iR e g 10—5

- FAYAEFEFEMLT, STEZITUOVELLD.
- FTOTAOYSLIZRLEZTOEDIEITTYT. thBEEFLEML TSN

calc.hs

{- token.hs -}
data Token = ...

tokens ...

calc:: [Token] -> Int
calc [Num x] = x
calc (Num x:Add:Num y:ts) = calc (Num (x+y) :ts)

main = do { cs <- getContents;
putStr $ unlines $ map (show . calc .tokens) $ lines cs }

- RITH

% stack runghc calc.hs
1+2

3

14+2+4+34+4+5+6+7+8+9

45

1+2*3-4/5

1

. B
X ARDIERL

- 142*3 Z 14+ (2*3) BRI LH=-OHIZIE, FAD)RAMEE
BEMNDIEIZFHE T 5D TIELEL, —EREXAKREIERLI=ADN
BB TEET.

B RET—ABELTEERLET.

data ParseTree = Number Int |
Plus ParseTree ParseTree |

Minus ParseTree ParseTree |
Time ParseTree ParseTree |
Divide ParseTree ParseTree

Plus

1+2%*3 #

Time

S
IN—H

- FAID) A EXARZELDH/N—FTY.
s N—H[EROBZFHLFT.

[Token] -> (ParseTree, [Token])

- FEDFINEZ SN, BHLTHEEN>-EXAREEBYDFEADFIERLET.
- D (BNF)

term ((""‘" | n_n) term)*
number (("*" | "/") number)*

expr ::
term ::

BNFTIE(...)*[E{...} TEMINBIELEZL. 0EILLEDEYRLEZEKT 5.

[Num 1, Mul, Num 2, Add, Num 3]

- ((Time (Number 1) (Number 2)), [Add, Num 3])

term /\—1H

- B
R mea10—6

- BLEESIEEDAZ/N—XT 5.

data Token =

tokens
data ParseTree = ... deriving Show
type Parser = [Token] -> (ParseTree, [Token])

parseNumber: : Parser
parseNumber (Num x:ts) = (Number x, ts)

parseTerm: :Parser
parseTerm ts = nextNumber $ parseNumber ts
where { nextNumber x = x }

parseExpr: :Parser
parseExpr ts = nextTerm $ parseTerm ts

where { nextTerm(pl, Add:tsl) = let (p2, ts2) = parseTerm tsl
in nextTerm(Plus pl p2, ts2);
let (p2, ts2) = parseTerm tsl
in nextTerm(Minus pl p2, ts2);

nextTerm(pl, Sub:tsl)
nextTerm x = x }

main = do { cs <- getContents;
putStr $ unlines $ map (show . fst . parseExpr . tokens) $ lines cs }

parseExpr » parseTerm parseNumber

nextTerm nextNumber

parseExpr D ENE

parseExpr ts =
nextTerm $ parseTerm ts

parseExpr [Num 1,Add,Num 2,Add,Num 3]

=

=

nextTerm $ parseTerm [Num 1,Add,Num 2,Add,Num 3]

nextTerm (Number 1, [Add,Num 2,Add,Num 3])

let (p2,ts2) = parseTerm [Num 2,Add,Num 3]

nextTerm(pl, Add:tsl)

. let (p2, ts2)
in nextTerm(Plus (Number 1) p2, ts2) in nextTerm(Plus pl p2,

= parseTerm tsl

ts2)

let (p2,ts2) = (Number 2, [Add,Num 3])
in nextTerm(Plus (Number 1) p2, ts2)

nextTerm (Plus (Number 1) (Number 2), [Add,Num 3])

let (p2,ts2) = parseTerm [Num 3]
in nextTerm(Plus (Plus (Number 1) (Number 2)) p2,ts2)

let (p2,ts2) = (Number 3,[])
in nextTerm(Plus (Plus (Number 1) (Number 2)) p2,ts2)

nextTerm (Plus (Plus (Number 1) (Number 2)) (Number 3),[])

(Plus (Plus (Number 1) (Number 2)) (Number 3),[])

nextTerm x

=D E

- N—ALTTEBXARZEL TIEZKRDS.

eval: :ParseTree -> Int

eval (Number x) = x

eval (Plus pl p2) = eval pl + eval p2
eval (Minus pl p2) =

eval (Times pl p2) =

eval (Divide pl p2) =

main = do { cs <- getContents;
putStr $
unlines $
map (show . eval . fst . parseExpr . tokens) §$
lines cs }

String —>»| tokens > parseExpr >» eval B—> Int
[Token] ParseTree

. S
fE R MRE10—7
-BLERLITTLEL, OmALEESRAZASEDIZLAGEI0Y.

calc.hs

import Data.Char
data Token = Num Int | Add | Sub | Mul | Div

tokens: :String -> [Token]

tokens = ... =177
data ParseTree = ... ;:Ezck runghc calc
type Parser = [Token] -> (ParseTree, [Token]) 14

4/3*5
parseNumber = ... 5
parseTerm = ... 5-3-4
parseExpr = ... -2

eval: :parseTree -> Int
eval =

main = do { cs <- getContents ;
putStr $ unlines $
map (show . eval . fst . parseExpr . tokens) $ lines cs }

N . R
ﬁ’g [E1eE10—8
 COBSTIE, 0TORYEETIXEANT BEBMLAILITRYET.

eval: :ParseTree -> Int
eval (Divide pl p2) =

- eval Z Int 2RI B LLTTIEA Maybe Int %LTE&%I& TEEL, OTOENYELHH-
-EFIZIETS—Ayt—IFHALT, &0)]\73’5' (F4HIFBEIIZLERELN.

- eval::ParseTree -> Maybe Int

calc.hs
import Data.Char = |
data Token = Num Int | Add | Sub | Mul | Div =ATH
data ParseTree = ... % stack runghc calc.hs
type Parser = [Token] -> (ParseTree, [Token]) 5+4*3/2
11
5+2/0-3
eval: :ParseTree -> Maybe Int error: division by O
eval (Number x) = Just x 1+2-3*4/5
c. 1
eval (Divide pl p2) = ...

showResult: :Maybe Int -> String
showResult Nothing = "error: division by 0"
showResult Just x = show x

main = do { cs <- getContents;
putStr $ unlines $
map (showResult . eval . fst . parseExpr . tokens) $ lines cs }

	関数型プログラミング�第10回　モナド
	モナドのクラス
	Maybeモナド
	lookup
	lookupを組み合わせる
	モナド則を使う
	練習問題10－1
	Listモナド
	Listモナド
	練習問題10－2
	IOモナド
	IOモナドの例
	モナド構文
	IOモナドと(>>)
	例（１）
	例（２）
	練習問題10－3
	リスト内包表記とListモナド
	電卓を作ってみよう
	字句をデータ型として定義
	練習問題１０－4
	練習問題10－5
	構文木の作成
	パーサ
	練習問題10－6
	parseExpr の動作
	式の評価
	練習問題10－7
	練習問題10－8

