
関数型プログラミング

第10回 モナド

萩野 達也

hagino@sfc.keio.ac.jp

1

https://vu5.sfc.keio.ac.jp/slide/
Slide URL

モナドのクラス

• Monad クラスのインスタンスがモナド
• 2つの関数を実装する必要がある．

• (>>=) はバインド（bind）と呼ばれる

2

class Monad m where {
(>>=) :: m a -> (a -> m b) -> m b ;
return :: a -> m a

}

1. (return x) >>= f = f x
2. m >>= return = m
3. (m >>= f) >>= g = m >>= (∖x -> f x >>= g)

• 2つの関数は次の規則を満たしている必要がある．
• モナド則

Maybeモナド

• 「Maybe a」は失敗を扱うためによく用いられる．
• 「Just x」は成功した場合の値を表している．

• 「Nothing」は失敗を表している．

3

data Maybe a = Nothing | Just a deriving (Eq, Ord)

lookup::(Eq a) => a -> [(a, b)] -> Maybe b

例

• f:: a -> Maybe b
• f は「b」の型の値を返すかもしれない．
• 「b」の型の値を返すことができない場合には「Nothing」を返す．

instance Monad Maybe where {
(Just x) >>= f = f x ;
Nothing >>= f = Nothing ;
return x = Just x

}

lookup

• lookupは2つの引数を取る：
• インデックス

• 連想リスト（タプルのリスト）

4

lookup::(Eq a) => a -> [(a,b)] -> Maybe b

lookup "three" [("one", 1), ("two", 2), ("three", 3)] ⇒ Just 3
lookup "four" [("one", 1), ("two", 2), ("three", 3)] ⇒ Nothing

lookup "path" [("type", "cgi"), ("path", "/var/app")] ⇒ Just "/var/app"
lookup "url" [("type", "cgi"), ("path", "/var/app")] ⇒ Nothing

• lookupは次の値を返す：
• 与えられたインデックスのタプルがあった場合には，対応する値を「Just x 」として
返す．

• 対応するタプルがなかった場合には，「Nothing」を返す．

lookupを組み合わせる

• lookupの結果にさらにlookupを適用したい．
• 最初のlookupが成功したかどうかを確認する必要がある．

5

config :: [(String, [(String, String)])]
config =

[("database", [("path", "/var/app/db"), ("encoding", "euc-jp")]),
("urlmapper", [("cgiurl", "/app"), ("rewrite", "True")]),
("template", [("path", "/var/app/template")])]

lookup "database" 成功？ lookup "path"config 成功？

Just Just

NothingNothing

case (lookup "database" config) of {
Just entries -> lookup "encoding" entries ;
Nothing -> Nothing

}

モナド則を使う

• Maybeがモナドであることから：

6

case (lookup "database" config) of {
Just entries -> lookup "encoding" entries ;
Nothing -> Nothing }

lookup "database" config >>= lookup "encoding"

instance Monad Maybe where {
(Just x) >>= f = f x ;
Nothing >>= f = Nothing ;
return x = Just x

}

return config >>= lookup "database" >>= lookup "encoding"

練習問題10－1
• 次のプログラムは x を2で割るが，偶数でない時には失敗する．

7

div2::Int -> Maybe Int
div2 x = if even x then Just (x `div` 2)

else Nothing

• 例
• div2 4⇒ Just 2
• div2 3⇒ Nothing

div8::Int -> Maybe Int
div8 x = ...

• div2 を3回使うことによって，与えられた数字を8で割るが，8で割れない
場合には失敗する関数 div8 を定義しなさい．
• div8 24 ⇒ Just 3
• div8 20 ⇒ Nothing

Listモナド

• Maybeモナド
• 失敗などして値が存在しない場合を扱うことができる．

8

入力

出力

出力

出力

出力

• Listモナド
• 扱う値の数が増えたり減ったりする場合を扱う．

Listモナド

• 例
• ファイル名の展開

• expandCharClass "img[012].png"
⇒ ["img0.png", "img1.png", "img2.png"]

• expandAltWorlds "img.{png,jpg}"
⇒ ["img.png", "img.jpg"]

9

instance Monad [] where {
xs >>= f = concat $ map f xs ;
return x = [x]

}

• 2つの展開関数を組み合わせる
• expandPattern::String -> [String]
• expandPattern pattern

= expandCharClass pattern >>= expandAltWords

• expandPattern "img[012].{png,jpg}"
⇒ ["img0.png", "img0.jpg", "img1.png", "img1.jpg",

"img2.png", "img2.jpg"]

練習問題10－2
• replicateは与えられた要素を与えられた回数コピーしたリストを返す関数
です．
• replicate :: Int -> a -> [a]
• replicate 3 1 ⇒ [1,1,1]
• replicate 5 'a' ⇒ "aaaaa"

10

• replicate を使って，与えられたリストのそれぞれの要素を2重にして返す
関数 double をListモナドを使って定義しなさい．
• double [1,2,3] ⇒ [1,1,2,2,3,3]
• double "SFC" ⇒ "SSFFCC"

double xs = ...

double.hs

IOモナド
• 入出力には順番がある．

• e.g. プロンプトは入力の前に出力する．

• e.g. "Sunday"を"Monday"の前に出力する．

11

before
input/output

after
input/output

a value

IO a

• 「(>>=)」および「return」はシステムで実装されている．
• x >>= y
• アクション「x」がうまくいった場合には，その結果をアクション「y」の渡す．
• そのため，アクション「x」はアクション「y」の前に行う必要がある．

• 「IO a」の値は入出力アクションを表している．

IOモナドの例

• getContents::IO String
• コンソールから入力するアクション

• putStr::String -> IO ()
• 文字列をコンソールに出力するアクション

12

main = getContents >>= putStr

cat.hs

main = do { cs <- getContents ;
putStr cs }

• do式を使うと次のように書くこともできる．

モナド構文
• do式

13

e1 >>= e2
do { x <- e1;

e2 x }

e1 >>= ∖x -> e2
do { x <- e1;

e2 }

e1 >>= e2 >>= e3

do { x <- e1;
y <- e2 x;
e3 y }

e1 >>= ∖x -> e2
>>= ∖y -> e3

do { x <- e1;
y <- e2;
e3 }

IOモナドと(>>)
• 次のdo式は(>>=)を使って書き直すことができる．

14

do { putStrLn "Hello, World!";
putStrLn "Hello, again!!!" }

putStrLn "Hello, World!" >>= ∖x -> putStrLn "Hello, again!!!"

• 2つ目の putStrLn は変数 x を使わないので，Monad のクラスメ
ソッド(>>) を使うことができる．

putStrLn "Hello, World!" >> putStrLn "Hello, again!!!"

class Monad m where {
(>>)::m a -> m b -> m b ;
f >> g = f >>= (∖x -> g)

}

例（１）

15

nameDo::IO ()
nameDo = do { putStr "What is your first name? ";

first <- getLine;
putStr "And your last name? ";
last <- getLine;
let full = first ++ " " ++ last;
putStrLn ("Please to meet you, " ++ full ++ "!") }

nameNoDo::IO ()
nameNoDo = putStr "What is your first name? " >>

getLine >>= ∖first ->
putStr "And your last name? " >>
getLine >>= ∖last ->
let full = first ++ " " ++ last
in putStrLn ("Please to meet you, " ++ full ++ "!")

例（２）

• lookup を二重に行う場合を，do式で書いてみる．

16

case (lookup "database" config) of {
Just entries -> lookup "encoding" entries ;
Nothing -> Nothing }

lookup "database" config >>= lookup "encoding"

do { entries <- lookup "database" config ;
lookup "encoding" entries }

練習問題10－3
• 練習問題10－1の div8 を do式を用いて書きなさい．

17

import System.Environment

div2::Int -> Maybe Int
div2 x = if even x then Just (x `div` 2)

else Nothing

div8::Int -> Maybe Int
div8 x = do { y <- div2 x;

...;

... }

main = do { args <- getArgs;
print $ div8 $ read $ head args }

div8.hs

リスト内包表記とListモナド
• Haskellには便利なリスト内包表記があります．

• [x * 2 | x <- [1..5]] ⇒ [2,4,6,8,10]
• [(x,y) | x <- [1,2], y <- [3,4]]

⇒ [(1,3),(1,4),(2,3),(2,4)]

18

• これはListモナドの糖衣構文(syntax sugar)です．

[x * 2 | x <- [1..5]] [1..5] >>= ∖x -> return(x * 2)

do { x <- [1..5];
return (x * 2) }

[(x,y) | x <- [1,2],
y <- [3,4]]

[1,2] >>= ∖x ->
[3,4] >>= ∖y -> return (x,y)

do { x <- [1,2];
y <- [3,4];
return (x,y)}

電卓を作ってみよう
• 次のような簡単な計算のできる電卓を作成してみよう．

19

1+2+3+4 ⇒ 10
12+3*45 ⇒ 147

• 最初に，入力された文字列を字句（token）のリストに変換する．

12+3*45 12 + 3 * 45

数字 数字 数字

＋記号

×記号

字句をデータ型として定義

• 字句は数字か記号（4種類）のどちらか．

20

data Token = Num Int | Add | Sub | Mul | Div

tokens::String -> [Token]
tokens [] = []
tokens ('+':cs) = Add:(tokens cs)
tokens ('-':cs) = Sub:(tokens cs)
tokens ('*':cs) = Mul:(tokens cs)
tokens ('/':cs) = Div:(tokens cs)
tokens (c:cs) | isDigit c = let (ds,rs) = span isDigit (c:cs)

in Num(read ds):(tokens rs)

• spanはリストの先頭から条件を満たす部分を切り出す関数
• span :: (a -> Bool) -> [a] -> ([a], [a])
• span (< 3) [1,2,3,4,1,2,3,4] = ([1,2],[3,4,1,2,3,4])
• span (< 9) [1,2,3] = ([1,2,3],[])
• span (< 0) [1,2,3] = ([],[1,2,3])

練習問題１０－4
• Tokenが正しく動くかテストしなさい．

21

import Data.Char

data Token = Num Int | Add | Sub | Mul | Div deriving Show

tokens::String -> [Token]
tokens [] = []
tokens ('+':cs) = Add:(tokens cs)
tokens ('-':cs) = Sub:(tokens cs)
tokens ('*':cs) = Mul:(tokens cs)
tokens ('/':cs) = Div:(tokens cs)
tokens (c:cs) | isDigit c = let (ds,rs) = span isDigit (c:cs)

in Num(read ds):(tokens rs)

main = do { cs <- getContents;
putStr $ unlines $ map (unwords . (map show) . tokens) $ lines cs }

% stack runghc token.hs
1+2*3
Num 1 Add Num 2 Mul Num 3

token.hs

• 実行例

練習問題10－5
• 字句リストを評価して，計算を行いましょう．

• 下のプログラムは足し算を行う部分だけです．他の演算子も追加してください．

22

{- token.hs -}
data Token = ...

tokens ...

calc::[Token] -> Int
calc [Num x] = x
calc (Num x:Add:Num y:ts) = calc (Num (x+y):ts)
....

main = do { cs <- getContents;
putStr $ unlines $ map (show . calc .tokens) $ lines cs }

calc.hs

• 実行例

% stack runghc calc.hs
1+2
3
1+2+3+4+5+6+7+8+9
45
1+2*3-4/5
1

構文木の作成
• 1+2*3 を 1+(2*3) と解釈するためには，字句のリストを先
頭から順に計算するのではなく，一度構文木を作成した方が
簡単にできます．

23

data ParseTree = Number Int |
Plus ParseTree ParseTree |
Minus ParseTree ParseTree |
Time ParseTree ParseTree |
Divide ParseTree ParseTree

1+2*3

1

Plus

2

Time

3

• 構文木をデータ型として定義します．

パーサ
• 字句のリストから構文木を作るのがパーサです．

24

expr ::= term (("+" | "-") term)*
term ::= number (("*" | "/") number)*

[Num 1, Mul, Num 2, Add, Num 3]

term パーサ

((Time (Number 1)(Number 2)), [Add, Num 3])

BNFでは(...)*は{...}で書かれることも多い．0回以上の繰り返しを意味する．

• 式の構文(BNF)

• パーサは次の型を持ちます．
[Token] -> (ParseTree, [Token])

• 字句の列が与えられ，解析して出来上がった構文木と残りの字句の列を返します．

練習問題10－6
• 足し算と引き算の式をパースする．

25

data Token = ...

tokens ...

data ParseTree = ... deriving Show

type Parser = [Token] -> (ParseTree, [Token])

parseNumber::Parser
parseNumber(Num x:ts) = (Number x, ts)

parseTerm::Parser
parseTerm ts = nextNumber $ parseNumber ts
where { nextNumber x = x }

parseExpr::Parser
parseExpr ts = nextTerm $ parseTerm ts
where { nextTerm(p1, Add:ts1) = let (p2, ts2) = parseTerm ts1

in nextTerm(Plus p1 p2, ts2);
nextTerm(p1, Sub:ts1) = let (p2, ts2) = parseTerm ts1

in nextTerm(Minus p1 p2, ts2);
nextTerm x = x }

main = do { cs <- getContents;
putStr $ unlines $ map (show . fst . parseExpr . tokens) $ lines cs }

parseExpr parseTerm parseNumber

nextTerm nextNumber

parseExpr の動作
parseExpr [Num 1,Add,Num 2,Add,Num 3]

26

⇒ nextTerm $ parseTerm [Num 1,Add,Num 2,Add,Num 3]

⇒ nextTerm (Number 1,[Add,Num 2,Add,Num 3])

⇒ let (p2,ts2) = parseTerm [Num 2,Add,Num 3]
in nextTerm(Plus(Number 1) p2, ts2)

⇒ let (p2,ts2) = (Number 2,[Add,Num 3])
in nextTerm(Plus(Number 1) p2, ts2)

⇒ nextTerm(Plus(Number 1)(Number 2),[Add,Num 3])

⇒ let (p2,ts2) = parseTerm [Num 3]
in nextTerm(Plus(Plus(Number 1)(Number 2)) p2,ts2)

⇒ let (p2,ts2) = (Number 3,[])
in nextTerm(Plus(Plus(Number 1)(Number 2)) p2,ts2)

⇒ nextTerm(Plus(Plus(Number 1)(Number 2))(Number 3),[])

⇒ (Plus(Plus(Number 1)(Number 2))(Number 3),[])

parseExpr ts =
nextTerm $ parseTerm ts

nextTerm x = x

nextTerm(p1, Add:ts1) =
let (p2, ts2) = parseTerm ts1
in nextTerm(Plus p1 p2, ts2)

式の評価
• パースしてできた構文木を評価して値を求める．

27

eval::ParseTree -> Int
eval(Number x) = x
eval(Plus p1 p2) = eval p1 + eval p2
eval(Minus p1 p2) = ...
eval(Times p1 p2) = ...
eval(Divide p1 p2) = ...

main = do { cs <- getContents;
putStr $
unlines $
map (show . eval . fst . parseExpr . tokens) $
lines cs }

tokens parseExpr eval
[Token] ParseTree

IntString

練習問題10－7
・足し算だけでなく，他の四則演算も扱えるようにしなさい．

28

import Data.Char

data Token = Num Int | Add | Sub | Mul | Div

tokens::String -> [Token]
tokens = ...

data ParseTree = ...
type Parser = [Token] -> (ParseTree, [Token])

parseNumber = ...
parseTerm = ...
parseExpr = ...

eval::parseTree -> Int
eval = ...

main = do { cs <- getContents ;
putStr $ unlines $
map (show . eval . fst . parseExpr . tokens) $ lines cs }

calc.hs

% stack runghc calc
2+3*4
14
4/3*5
5
5-3-4
-2

実行例

練習問題10－8
• この電卓では，0での割り算を行う式を入力するとおかしなことになります．

29

eval::ParseTree -> Int
eval(Divide p1 p2) =

• eval を Int を返す関数としてではなく Maybe Int を返す関数として定義し，0での割り算があっ
た時にはエラーメッセージを出力して，次の入力を受け付けるようにしなさい．

• eval::ParseTree -> Maybe Int

import Data.Char
data Token = Num Int | Add | Sub | Mul | Div
data ParseTree = ...
type Parser = [Token] -> (ParseTree, [Token])
...

eval::ParseTree -> Maybe Int
eval(Number x) = Just x
...
eval(Divide p1 p2) = ...

showResult::Maybe Int -> String
showResult Nothing = "error: division by 0"
showResult Just x = show x

main = do { cs <- getContents;
putStr $ unlines $

map (showResult . eval . fst . parseExpr . tokens) $ lines cs }

% stack runghc calc.hs
5+4*3/2
11
5+2/0-3
error: division by 0
1+2-3*4/5
1

実行例

calc.hs

	関数型プログラミング�第10回　モナド
	モナドのクラス
	Maybeモナド
	lookup
	lookupを組み合わせる
	モナド則を使う
	練習問題10－1
	Listモナド
	Listモナド
	練習問題10－2
	IOモナド
	IOモナドの例
	モナド構文
	IOモナドと(>>)
	例（１）
	例（２）
	練習問題10－3
	リスト内包表記とListモナド
	電卓を作ってみよう
	字句をデータ型として定義
	練習問題１０－4
	練習問題10－5
	構文木の作成
	パーサ
	練習問題10－6
	parseExpr の動作
	式の評価
	練習問題10－7
	練習問題10－8

