
関数型プログラミング

第5回 タプルとパターンマッチ

萩野 達也

hagino@sfc.keio.ac.jp

1

https://vu5.sfc.keio.ac.jp/slide/

Slide URL

型と値
• 値は型ごとに分類されている

• 型は値の集合

2

• Haskellは静的な型チェックを行う
• コンパイル時に型をチェックしてくれる

• 型が合わないとエラーになる

• Haskellは型推論を行う
• 明示的に型を指定しなくとも推論して補ってくれる

基本的な型
• 基本的な型には以下のようなものがある．

• 真偽値
• Bool型

3

• 数値
• Int型，Integer型，Float型，Double型

• 文字
• Char型

• タプル
• (a,b)型

• 文字列
• String型 = [Char]型

• ユニット
• ()型

• リスト
• [a]型

• 関数
• a -> b型

関数の型

• add2 x = x + 2

• Int -> Int

4

第1引数の型 -> 第2引数の型 -> ‥‥ -> 返り値の型

• gcd x y = if y == 0 then x else gcd y (x `mod` y)

• Int -> Int -> Int

• suum xs = if null xs then 0

else head xs + suum(tail xs)

• [Int] -> Int

型変数
• length関数

• length [1, 2, 3]

• length ['a', 'b']

• length ["abc", "def"]

• 色々な型のリストに適用可能

• 多層型（polymorphic）関数

• length関数の型
• [a] -> Int

• aは型変数

5

ghciを使って型を調べる

% stack ghci

Prelude> :type map

map :: (a->b)->[a]->[b]

• map関数
• map square [1, 2, 3]

• map関数の型
• (a->b)->[a]->[b]

型推論
• 関数適用では，実引数と関数の引数の型が一致している必要があ
る．
• 型推論が行われることがある．

6

• map length

• mapの型 (a->b)->[a]->[b]

• lengthの型は [a]->Int

• map lengthの型は [[a]]->[Int] と推論される．

• lengthの型は [a]->Int

• length [1,2,3]

• [1,2,3]が [Int] であることから，型変数 aは Int であると推論される．

型の宣言

• 変数の型を指定する

7

変数名 :: 型

• 関数の型を指定する
• 関数の定義の時にチェックされる

• 型推論がうまくいかないときに指定する

関数名 :: 第1引数の型 -> 第2引数の型 -> ‥‥ -> 返り値の型

length :: [a] -> Int

reverse :: [a] -> [a]

map :: (a->b)->[a]->[b]

(+) :: Int -> Int -> Int

(++) :: [a] -> [a] -> [a]

putStrLn:: String -> IO()

タプル

• タプル（tuple）とは
• いくつかの値の組．色々な型の値を組み合わせることが可能

• 要素の個数と順序まで含めて型が決まる

8

• タプルの例
• (3, "string") :: (Int, String)

• ("lucky", 7) :: (String, Int)

• (1, "string", [5, 4, 3]) :: (Int, String, [Int])

• ('a', "string", (1, 3)) :: (Char, String, (Int, Int))

• ユニット
• 0要素のタプル
• （） :: ()

タプルを扱う関数
• fst :: (a, b) -> a

• 2要素のタプルの第1要素を返す
• fst (1, 2) → 1

• fst ("key", "value") → "key"

9

• snd :: (a, b) -> b

• 2要素のタプルの第2要素を返す
• snd (1, 2) → 2

• snd ("key", "value") → "value"

• zip :: [a] -> [b] -> [(a, b)]

• zip xs ys はリスト xs とリスト ysの各要素を横につないだタプルのリストを返す

• zip [1, 2, 3] [4, 5, 6] → [(1, 4), (2, 5), (3, 6)]

• zip [1, 2, 3] ["a", "b"] → [(1, "a"), (2, "b")]

• unzip :: [(a, b)] -> ([a], [b])

• zip関数の逆で，タプルのリストをリストのタプルに分解する
• unzip [(1, 4), (2, 5), (3, 6)] → ([1, 2, 3], [4, 5, 6])

• unzip [(1, "a"), (2, "b")] → ([1, 2], ["a", "b"])

練習問題5－1
• zip を自分で定義してみなさい．

• zip :: [a] -> [b] -> [(a, b)]

• zip xs ys はリスト xs とリスト ysの各要素を横につないだタプルのリストを返す

• zip [1, 2, 3] [4, 5, 6] → [(1, 4), (2, 5), (3, 6)]

• zip [1, 2, 3] ["a", "b"] → [(1, "a"), (2, "b")]

10

ziip xs ys = if not(null xs) && not(null ys)

then ...

else []

ziip.hs

• xsおよび ysに関する分割統治で解く．
• xsあるいは ysが空リストならば，[]
• そうでない場合には，xsおよぶ ys を一つ短くしたリストに分割

練習問題5－2
• unzip を自分で定義してみなさい．

• unzip :: [(a, b)] -> ([a], [b])

• zip関数の逆で，タプルのリストをリストのタプルに分解する
• unzip [(1, 4), (2, 5), (3, 6)] → ([1, 2, 3], [4, 5, 6])

• unzip [(1, "a"), (2, "b")] → ([1, 2], ["a", "b"])

11

unziip ts = if null ts then ([], [])

else ...

unziip.hs

• tsに関する分割統治で解く．
• tsが空リストならば []のタプル
• そうでない場合には，ｔｓ を一つ短くしたリストに分割し，その結果を利用

let 式

• let式を使うと，その式の中だけで有効な束縛を導入できる
• 定義された束縛を行って式を評価する

• 式の外では定義を参照することはできない

12

let { 定義1; 定義2; 定義3; ... } in 式

f n = let { x = n + 1;

y = n + 2;

z = n + 3 }

in x * y * z

unziip ts = if null ts then ([], [])

else let { t = head ts;

p = unzip(tail ts) }

in (fst t:fst p, snd t:snd p)

unziip.hs

(let x = 2 in x + 3)*(let x = 3 in x + 4)

5 * 7

let式と where節

• where節

13

• 定義の中だけで有効な束縛を定義の後で導入する

定義0 where { 定義1; 定義2; 定義3; ‥‥ }

• 式の中だけで有効な束縛を式の前に導入する

let { 定義1; 定義2; 定義3; ... } in 式

• let式

練習問題5－3

• 次の where節を let式を使って書き直しなさい．

14

divisors x = filter divisible [1..x]

where divisible y = x `mod` y == 0

divisors.hs

divisors x = let ...

in ...

divisors2.hs

パターンマッチ
• 値のパターンによる場合分け

• 関数定義や case式で用いることができる．

15

map :: (a -> b) -> [a] -> [b]

map f xs = if null xs then []

else f(head xs):map f(tail xs)

• パターンの種類
• 変数パターン
• 「_」パターン（ワイルドカード）
• リテラルパターン
• タプルパターン
• リストパターン
• データコンストラクタパターン

map f [] = []

map f (x:xs) = f x : map f xs

変数パターン・「_」パターン
• 変数パターン

• どんな値にでもマッチする

• 変数をマッチした値に束縛する

16

id :: a -> a

id x = x

• 「_」パターン
• ワイルドカードとも呼ばれる

• どんな値にでもマッチする

• マッチした値の変数への束縛などはない

const :: a -> b -> a

const x _ = x

map :: (a -> b) -> [a] -> [b]

map _ [] = []

map f (x:xs) = f x : map f xs

リテラルパターン・タプルパターン
• リテラルパターン

• 値と指定したリテラルが等しいときにマッチする

• 数値リテラル，文字リテラル，文字列リテラルを使うことができる

17

expandTab :: Char -> Char

expandTap '∖t' = '@'
expandTab c = c

• タプルパターン
• タプルにマッチするパターン

• タプルの各要素とマッチします

• タプル内には任意のパターンを使うことができます

• 「(パターン1, パターン2, パターン3, ‥‥)」

format :: (Int, String) -> String

format (n, line) = rjust 6 (show n) ++ " " ++ line

リストパターン・データコンストラクタによるパターン

• リストパターン
• リストにマッチするパターン

• 「[パターン1, パターン2, パターン3, ‥‥]」

18

last [] = error "last []"

last [x] = x

last (_:xs) = last xs

• データコンストラクタによるパターン
• リストは空リスト「[]」と「:」によって作られています

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

練習問題5－4

• リストを結合する append をデータコンストラクタパターンを
使って定義しなさい．

19

append xs ys = if null xs then ys

else (head xs):(append(tail xs) y)

append.hs

append [] ys = ...

append (x:xs) ys = ...

append2.hs

「@」パターン・ガード
• 「@」パターン

• アズパターンともいわれる

• 「変数名@パターン」

• パターンにマッチさせ，値全体が変数名に束縛される

20

lstrip str@(c:cs) = if isSpace c then lstrip cs else str

• ガード
• パターンの後に「|」を書き，その後ろにBool型の式を書くことでBool式

がTrueの場合だけに限定できます．

• 「パターン1 パターン2‥‥ | ガード」

joinPath :: String -> String -> String

joinPath a b | null a = pathSep : b

| last a == pathSep = a ++ b

| otherwise = a ++ pathSepStr ++ b

case式

• 「式」の値でパターン?にマッチさせガード??がTrueとなる最初の
式??の値となる．

21

case 式 of {

パターンA | ガードA1 -> 式A1

| ガードA2 -> 式A2

: :

| ガードAn -> 式An;

パターンB | ガードB1 -> 式B1

| ガードB2 -> 式B2

: :

}

case str of {

"" -> "";

(c:cs) -> toUpper c : cs

}

練習問題5－5
• 練習問題4－3の fizzBuzz を case式のガードを使って定義しな
さい．

22

fizzBuzz.hs

fizzBuzz n = map fb [1..n]

where fb n = if n `mod` 15 == 0 then "Fizz Buzz"

else if n `mod` 5 == 0 then "Buzz"

else if n `mod` 3 == 0 then "Fizz"

else show n

fizzBuzz n = map fb [1..n]

where fb n = case n of {

}

fizzBuzz2.hs

関数定義
• パターンマッチを使って関数を定義

23

関数名 パターンA1 パターンA2 ‥‥ | ガードA1 = 定義A1

| ガードA2 = 定義A2

:

:

関数名 パターンB1 パターンB2 ‥‥ | ガードB1 = 定義B1

| ガードB2 = 定義B2

:

:

• 関数名および変数名は識別子
• アルファベットの小文字で始まる

• アルファベット大文字・小文字，数字，アンダースコア，シングルクォートからなる

• 次の予約語は使えない
• case, class, data, default, deriving, do, else, if, import, in, infix,
infixl, infixr, instance, let, module, newtype, of, then, type,
where, -

練習問題5－6
• 練習問題4－3の fizzBuzz を関数定義のガードを使って定義し
なさい．

24

fizzBuzz2.hs

fizzBuzz n = map fb [1..n]

where fb n = case n of {

m | m `mod` 15 == 0 -> "Fizz Buzz"

| m `mod` 5 == 0 -> "Buzz"

| m `mod` 3 == 0 -> "Fizz"

| otherwise -> show m

}

fizzBuzz n = map fb [1..n]

where fb n ...

fizzBuzz3.hs

練習問題5－7

• 与えられた年がうるう年かどうか調べる leapYear を定義しなさい．

• 4で割り切れる年はうるう年である．

• ただし，100で割り切れる年はうるう年とはしない．

• しかし，400で割り切れる年はうるう年とする．

25

leapYear.hs

leapYear year ...

練習問題5－8
• 年と月が与えられたとき，その月の日数を返す関数 monthDays を定義
しなさい．
• 2月はうるう年のときには29日，それ以外の年は28日
• 4月，6月，9月，11月は30日
• それ以外の月は31日

• パターンマッチやガードを使って定義しなさい．

26

monthDays.hs

monthDays year month = ...

二項演算子の定義

• 関数定義と同じようにパターンを使って定義
• 記号の組み合わせで新しい二項演算子を定義することができる

• 関数名を二項演算子として扱うには「`関数名`」とする

• 二項演算子を関数として扱うには「(演算子)」とする

27

パターン1 演算子 パターン2 = 式

(||) :: Bool -> Bool -> Bool

True || _ = True

False || x = x

優先順位 左結合 非結合 右結合

9 !! ..

8 ^ ^^ **

7 * / `div` `mod` `rem` `quot`

6 + -

5 : ++

4 == /= < <= > >= `elem` `notElem`

3 &&

2 ||

1 >> >>=

0 $ $! `seq`

練習問題5－9
• 引数に与えられた年月日が，西暦1年1月1日から何日目かを出力
するプログラムを書きなさい．
• 西暦1年1月1日は1日目とします．
• 現在のグレゴリウス歴がずっと使われていたものとします．

28

leap year = ...

yearDay year = if leap year then 366 else 365

monthDays year month = ...

days year month day = ...

days.hs

• これを使うとその日の曜日を計算することができます．
• 西暦1年1月1日は月曜日です．

% stack ghci

Prelude> :load days.hs

*Main> days 2023 11 13

738837

%

