
関数型プログラミング

第6回 UNIXコマンドを作る（１）

萩野 達也

hagino@sfc.keio.ac.jp

1

https://vu5.sfc.keio.ac.jp/slide/

Slide URL

プログラム開発環境

• CUI
• UNIX (Linux): シェル（sh, csh, tcsh, bash）
• Mac OS X: ターミナル
• Windows: コマンドプロンプト

• テキストエディタ
• UNIX (Linux): vi (vim), emacs

• Mac OS X: TextEdit, mi, emacs

• Windows: notepad, xyzzy

• 非依存：atom

2

• プログラム開発環境CUI vs GUI
• CUI（Character User Interface）またはCLI（Command Line Interface）

• 単純で軽い
• コンパイラとライブラリを使ってプログラム開発
• テキストエディタを使ってプログラムを書く

• GUI（Graphical User Interface）
• 現代的だが重い
• エディタ，コンパイラ，デバッガなどが一体となっている
• 例：eclipse, Xcode, Visual Studio

UNIXの基本コマンド
• CUIの基本

• 実行するコマンドを入力する
• コマンド名と引数を与える
• current working directoryを正しく設定すること
• folder = directory

3

コマンド 意味

pwd current working directoryを表示（print working directory）

cd dir ディレクトリをdirに変更（change directory）

ls dir dirにあるファイルの一覧を表示（list）

ls -l dir dirにあるファイルの一覧を詳しく表示（long list）

cat file fileの中身を表示（concatenate）

more file fileの中身を1ページずつ表示

mkdir dir 新しいディレクトリdirを作成（make directory）

rmdir dir ディレクトリdirを削除する（remove directory）

rm file fileを削除する（remove）

command < file commandの入力をfileからにする（入力リダイレクション）

command > file commandの出力をfileにする（出力リダイレクション）

% command arg1 arg2 arg3

プロンプト

引数

削除したものを戻すことはできない
ゴミ箱に移すのとは異なる

• シェルの基本コマンド

ファイルの中身を表示する

• UNIXのcatコマンドに似たものをHaskellで書いてみましょう．
• あたえられたファイルの中身を表示する．

4

main = getContents >>= putStr

caat.hs

% stack ghc caat.hs

...

% ./caat < caat.hs

main = getContents >>= putStr

%

• "./" は現在のディレクトリを表す．

• "./caat" は現在のディレクトリの "caat" プログラムを意味する．

• Windowsでは "./caat" のかわりに ".¥caat.exe" としてください．

• "< caat.hs" は入力を端末からでなく，ファイルに切り替えるシェルによるリダイレクション．

catプログラム

• getContents

• 端末からの入力を文字列とするアクション

5

main = getContents >>= putStr

main = putStr(getContents)

• putStr

• 文字列を端末に出力するアクション
• putStr は文字列を受け取る関数
• putStrLn は最後に改行したが，putStr はしない

• getContents >>= putStr

• getContents のアクションが成功した場合，その値（文字列）を putStr に渡す

• getContents の値を直接 putStr に与える
• うまく動かない
• 関数型では一般に評価順序が決まっていないので，getContents が先に評価されるわけではな

い
• >>= を使って評価順序を与える必要がある（モナド）

遅延評価（lazy evaluation）

• getContents は端末からの入力のすべてを一度に読み込むわけではない．
• 端末からの入力を受け取り終わってから，それを文字列にして putStr に渡すわけでは

ない．
• 端末からの入力から作られる文字列になるであろうものを putStr に渡す．
• 実際の文字列の中身は putStr が出力しようとしてから読み込まれる．

6

main = getContents >>= putStr

caat.hs

遅延評価
lazy evaluation

先行評価
eager evaluation

必要になった時にはじめて評価する
なるべく評価を遅らせる

先に評価してしまう
積極的に評価する

• 端末から入力があるごとに出力される
• 端末からの入力はOSが1行ごとにまとめてアプリケーションに送っている

• 行ごとに読み込むようなループを書いたわけではない

ファイルの行数を数える

• 上記のプログラムを実行

7

main = getContents >>= print . countLine

countLine [] = ...

countLine ('∖n':cs) = ...
countLine (_:cs) = ...

countline.hs

% stack runghc countline.hs < countline.hs

5

• UNIXではwcコマンドを使って，ファイルの行数を数えることができる．

% wc countline.hs

5 21 111 countline.hs

• ファイルの行数を数えるプログラムをHaskellで書いてみよう．
• 行の終わりには改行文字（'∖n')があるので，その数を数えればよい．

ファイルの行数を数える（２）

8

main = getContents >>= print . countLine

countLine cs = length(filter eqln cs)

where eqln ch = ...

countline2.hs

• ファイル（文字列）から改行文字（'∖n')だけを取り出して数えれば
良いのでは?

• リストの中から条件に合うものだけを選ぶ．
• filter::(a->Bool)->[a]->[a]

• filter p xs

• p は真偽値を返す関数
• p が True となる xs の要素だけを選ぶ．

• 高階関数 filter を用いるとどうなる?

$ 演算子

• '$' 演算子の利用
• 'f $ x' の意味は '(f x)'

9

countLine cs = length(filter eqln cs)

countLine cs = length $ filter eqln cs

• 右結合の演算子なので括弧を省略することが可能

• 'f $ g $ x' は 'f $ (g $ x)' を意味する

head $ tail $ tail $ tail xs

head(tail(tail(tail xs)))

ファイルの行数を数える（3）

10

main = getContents >>= print . countLine

countLine cs = length $ filter eqln cs

where eqln ch = ch == '∖n'

countline3.hs

• でも，まだ，疑問は残る
• 「print . countLine」の「.」は何？

• 「filter eqln」で filter の述語は常に where で書かないといけない

の?

• '$' 演算子を使うことで少しすっきりした．

無名関数

• 関数名を与えずに関数を作ることができる．
• 関数定義＝関数作成＋変数束縛

11

∖パターン1 パターン2 ‥‥ -> 式

map (∖n -> n * n) [1, 2, 3, 4, 5]

• 使用例
• 関数の値を作成する．

• 一度しか使わない関数に名前を与える必要はない．

square n = n * n

square = ∖n -> n * n

let square n = n * n

in map square [1, 2, 3, 4, 5]

無名関数（つづき）
• 複数引数の無名関数

12

add x y = x + y

add = ∖x y -> x + y

(∖x y -> x + y) 2 3 ⇒ (∖y -> 2 + y) 3 ⇒ 2 + 3 ⇒ 5

add2 (x, y) = x + y

add2 = ∖(x, y) -> x + y

map (∖(x, y) -> x + y) [(1,11),(2,12),(3,13)]
⇒ [(1+11),(2+12),(3+13)]

⇒ [12,14,16]

• パターンマッチを利用することも可能
• ただし一つのパターンしか書くことができない

• ガードも使うことができない

letも無名関数？

13

let square n = n * n

in map square [1, 2, 3, 4, 5]

let square = ∖n -> n * n
in map square [1, 2, 3, 4, 5]

(∖square -> map square [1, 2, 3, 4, 5])(∖n -> n * n)

let x = 2

in x * x
(∖x -> x * x) 2

ファイルの行数を数える（4）

14

main = getContents >>= print . countLine

countLine cs = length $ filter (∖ch -> ch == '∖n') cs

countline4.hs

• でも，まだ，疑問は残る
• 「print . countLine」の「.」は何？

• 「∖ch -> ch == '∖n'」は良いけど，もっと何とかならないの？

• 無名関数を使って where を消す

部分適用

• 関数に引数は一度に渡す必要はない
• addThree i j k = i + j + k

• 「addThree 5」はaddThreeに最初の引数を与えた部分適用状態

• 残り2つの引数が与えられるのを待っている

15

addThree i j k = i + j + k

addThree 5 = ∖j k -> 5 + j + k

(addThree 5) 6 = ∖k -> 5 + 6 + k

((addThree 5) 6) 7 = 5 + 6 + 7

• 部分適用
• 関数に一部の引数を与えた状態のこと

セクション
• 二項演算子の部分適用

16

map (+ 7) [1,2,3,4,5]

⇒ [8,9,10,11,12]

filter (/= '∖r') "aaa∖r∖nbbb∖r∖nccc∖r∖nddd∖r∖neee∖r∖n"
⇒ "aaa∖nbbb∖nccc∖nddd∖neee∖n"

• 例:
• 「(+ 1)」は「+」の2つ目の引数を部分適用したもの

• 「(1 +)」は「+」の1つ目の引数を部分適用したもの

• (+ 1) 2 ⇒ 3

• 注意:
• (-) 二項演算子でもあり単項演算子でもある

• 「(- 1)」 は単に「 -1」を意味する

• 「(subtract 1)」を使うこと

ファイルの行数を数える（5）

17

main = getContents >>= print . countLine

countLine cs = length $ filter (== '∖n') cs

countline5.hs

• 最後の疑問
• 「print . countLine」の「.」は何？

• セクションを使う

関数の合成

• '.' 演算子
• 'f . g' は関数 'f' と 'g' を合成した関数

• '(f . g) x' の意味は '(f (g x))'

18

headTail xs = head(tail xs)

tail headxs
2番目の

要素

先頭を
取り除いた

リスト

headTail xs = (head . tail) xs

headTail = head . tail

𝑓 ∘ 𝑔

𝐴 𝐵 𝐶
𝑓𝑔

関数合成

• 2つの関数を合成して新しい関数を作る
• (f . g) x = f (g x)

• f . g = ∖x -> f (g x)

19

(.) :: (b -> c) -> (a -> b) -> (a -> c)

凡例 f.g

headTail :: [a] -> a

headTail xs = head $ tail xs

headTail :: [a] -> a

headTail = head . tail

• ($)との違い
• ($) :: (a -> b) -> a -> b

• f $ x = f x

ファイルの行数を数える（6）

20

main = getContents >>= print . length . filter (== '∖n')

countline6.hs

• 関数合成を使う

main = getContents >>= print . countLine

main = getContents >>= ∖cs -> print(countLine cs)

countLine cs = length $ filter (== '∖n') cs

countLine = length . filter (== '∖n')

lines関数
• 'lines cs' 関数

• 文字列 cs を行ごとに分ける
• lines::String -> [String]

• lines "aaa∖nbbb∖nccc∖n" → ["aaa", "bbb", "ccc"]
• lines "aaa∖n" → ["aaa"]
• lines "aaa" → ["aaa"]
• lines "∖n" → [""]
• lines "" → []

21

countLine cs = length(lines cs)

• cs の行数を数える
• cs を行ごとに分けたリストにして，その長さを求める

countLine cs = length $ lines cs

countLine = length . lines

airline-code.txt

• 世界の航空会社のIATAコード
• See https://en.wikipedia.org/wiki/List_of_airline_codes

22

Q5 40-Mile Air MILE-AIR United States

W9 Abelag Aviation ABG Belgium

M3 ABSA Cargo Turismo Brazil

MO Abu Dhabi Amiri Flight SULTAN United Arab Emirates

GB ABX Air ABEX United States

ZA AccessAir CYCLONE United States

VX ACES Colombia ACES Colombia

...

C4 Zimex Aviation ZIMEX Switzerland

3J Zip ZIPPER Canada

Z4 Zoom Airlines ZOOM Canada

airline-code.txt

• タブで区切られている
• IATAコード，航空会社，コールサイン，国名

タブ

ファイルの先頭10行を表示

• 上記プログラムを実行

23

main = getContents >>= putStr . firstNLines 10

firstNLines n cs = unlines $ take n $ lines cs

head.hs

% stack runghc head.hs < airline-code.txt

Q5 40-Mile Air MILE-AIR United States

W9 Abelag Aviation ABG Belgium

M3 ABSA Cargo Turismo Brazil

MO Abu Dhabi Amiri Flight SULTAN United Arab Emirates

GB ABX Air ABEX United States

ZA AccessAir CYCLONE United States

VX ACES Colombia ACES Colombia

KI Adam Air ADAM SKY Indonesia

Z7 ADC Airlines ADCO Nigeria

JP Adria Airways ADRIA Slovenia

'unlines' と 'take'

• 'take n xs' 関数
• リスト xs の先頭から n 要素を取り出したリストを作る．
• リスト xs が n より短い時には，リストをそのまま返す．
• take::Int -> [a] -> [a]

• take 3 [5, 2, 4, 6, 8] → [5, 2, 4]

• take 3 [5] → [5]

• take 3 [] → []

• take 3 "string" → "str"

• take 0 [1, 2, 3] → []

24

• 'unlines xs' 関数
• 'lines' 関数の逆．
• リスト xs の文字列を改行で区切りながらつなげる．
• unlines::[String] -> String

• unlines ["aaa", "bbb", "ccc"] → "aaa∖nbbb∖nccc∖n"
• unlines ["aaa"] → "aaa∖n"
• unlines [""] → "∖n"
• unlines [] → ""

• unlines ["aaa∖n"] → ["aaa∖n∖n"]

練習問題6-1

• 上のプログラムの firstNLines の本体を '$' を使って書き直しなさい．

25

main = getContents >>= putStr . firstNLines 10

firstNLines n cs = unlines(take n(lines cs))

head.hs

• 上のプログラムの firstNLines の本体を '.' を使って書き直す
とどうなりますか．

• take を自分自身で定義してみなさい．関数名は taake としましょう．

taake 0 _ = ...

taake _ [] = ...

taake n (x:xs) = ...

taake.hs

'reverse' と 'words'
• 'reverse xs' 関数

• リスト xs の要素の順番を逆転させたリストを返す．
• reverse [1, 2, 3] → [3, 2, 1]

• reverse [] → []

• reverse "string" → "gnirts"

• reverse "" → ""

• reverse ["abc", "def", "ghi"]

→ ["ghi", "def", "abc"]

26

• 'words cs' 関数

• 文字列 cs を単語に分割する．

• 空白（タブ，改行を含む）で単語は区切られているものとする．

• words "This is a pen." → ["This", "is", "a", "pen."]

• words " a(1, 2, 3) " → ["a(1,", "2,", "3)"]

• words "a∖nb∖nc∖n" → ["a", "b", "c"]

• words "" → []

練習問題6－2

• ファイルの文字数を出力する．

27

main = getContents >>= print ...

countbyte.hs

main = getContents >>= print ...

countword.hs

• ファイルの単語数を出力する．

練習問題6－3

練習問題6－4

• ファイルの行を逆順に出力するプログラムを完成させなさい．
• 関数合成を使って書いてみなさい．

28

main = getContents >>= putStr ...

reverse.hs

% stack runghc reverse.hs < airline-code.txt

Z4 Zoom Airlines ZOOM Canada

3J Zip ZIPPER Canada

C4 Zimex Aviation ZIMEX Switzerland

C4 Zimex Aviation ZIMEX Switzerland

Q3 Zambian Airways ZAMBIANA Zambia

...

Q5 40-Mile Air MILE-AIR United States

練習問題6－5

• ファイルの最後の10行を出力するプログラムを完成させなさい．

• 関数合成を使うとどうなりますか．

29

main = getContents >>= putStr . lastNLines 10

lastNLines n cs = unlines $ takeLast n $ lines cs

takeLast n xs = ...

tail.hs

% stack runghc tail.hs < airline-code.txt

R3 Yakutia Airlines AIR YAKUTIA Russia

YL Yamal Airlines YAMAL Russia

Y8 Yangtze River Express YANGTZE RIVER China

IY Yemenia YEMENI Yemen

2N Yuzhmashavia YUZMASH Ukraine

Q3 Zambian Airways ZAMBIANA Zambia

C4 Zimex Aviation ZIMEX Switzerland

C4 Zimex Aviation ZIMEX Switzerland

3J Zip ZIPPER Canada

Z4 Zoom Airlines ZOOM Canada

練習問題6－6

• ファイル奇数行だけを出力するプログラムを完成させなさい．

30

main = getContents >>= putStr . oddLines

oddLines ...

oddline.hs

% stack runghc oddline.hs < airline-code.txt

Q5 40-Mile Air MILE-AIR United States

M3 ABSA Cargo Turismo Brazil

GB ABX Air ABEX United States

VX ACES Colombia ACES Colombia

Z7 ADC Airlines ADCO Nigeria

A3 Aegean Airlines AEGEAN Greece

EI Aer Lingus SHAMROCK Ireland

E4 Aero Asia International AERO ASIA Pakistan

JR Aero California AEROCALIFORNIA Mexico

AJ Aero Contractors AEROLINE Nigeria

...

練習問題6－7

• ファイルの1行目，2行目，4行目，8行目，16行目と 2𝑛 行目
のみ出力するプログラムを完成させなさい．

31

main = getContents >>= putStr . someLines

someLines ...

someline.hs

% stack runghc someline.hs < airline-code.txt

Q5 40-Mile Air MILE-AIR United States

W9 Abelag Aviation ABG Belgium

MO Abu Dhabi Amiri Flight SULTAN United Arab Emirates

KI Adam Air ADAM SKY Indonesia

EM Aero Benin AEROBEN Benin

A8 Aerolink Uganda PEARL Uganda

KC Air Astana ASTANALINE Kazakhstan

LK Air Luxor AIRLUXOR Portugal

A2 Astra Airlines ASTRA Greece

7A Express Air Cargo TUNISIA CARGO Tunisia

6Y Smartlynx Airlines SMART LYNX Latvia

%

関数とアクションのまとめ

32

関数 意味

putStr cs 文字列 cs を出力するアクションを返す

putStrLn cs 文字列 cs を出力し，改行を出力するアクションを返す．

print x x の値を出力するアクションを返す．

length xs リスト xs の長さを返す．

take n xs リスト xs の先頭から n 要素だけのリストを返す．

reverse xs リスト xs を逆順に並び替えたリストを返す．

lines cs 文字列 cs を行ごとに分割したリストを返す．

unlines xs リスト xs の文字列を改行を挟んでつなげた文字列を返す．

words cs 文字列 cs を単語のリストに分割する．

アクション 意味

getContents 標準入力から読み込み文字列とするアクション

