Fundamentals of Logic No.5 Soundness and Completeness

Tatsuya Hagino

Faculty of Environment and Information Studies Keio University

2015/5/18

So far

- Propositional Logic
 - Logical Connectives
 - Truth Table
 - Tautology
- Normal Form
 - Disjunctive Normal Form
 - Conjunctive Normal Form
 - Restricting Logical Connectives
- Proof
 - Axiom and Theorem
 - LK Framework

Extending Tautology

- Extending the notion of tautology to sequent
- Let Γ be a sequence of formula A_1, \ldots, A_m

$$\Gamma^* = \begin{cases} A_1 \lor \dots \lor A_m & \text{when } m > 0 \\ \bot & \text{when } m = 0 \end{cases}$$

$$\Gamma_* = \begin{cases} A_1 \land \dots \land A_m & \text{when } m > 0 \\ \top & \text{when } m = 0 \end{cases}$$

• Sequent $\Gamma \to \Delta$ is a *tautology* \iff • $\Gamma_* \Rightarrow \Delta^*$ is a tautology

Soundness and Completeness

- $\Gamma \to \Delta$ is a tautology:
 - For any assignment $v, \ v(\Gamma_* \Rightarrow \Delta^*) = \mathbf{t}$
 - For any assignment of truth values to propositional variables, we can calculate the truth value of $\Gamma_* \Rightarrow \Delta^*$ using the truth tables and check it is always true.
- $\Gamma \to \Delta$ is provable in LK:
 - There is a proof figure of which end sequent is $\Gamma \to \Delta.$
 - Starting from initial sequents, we can construct a proof figure of $\Gamma \to \Delta.$
- *Soundness* of LK:
 - Any sequent which is provable is a tautology.
- *Completeness* of LK:
 - Any tautology is provable in LK.

LK Soundness Theorem (1)

- Theorem: For any sequent $\Gamma \to \Delta$, if $\Gamma \to \Delta$ is provable in LK, it is a tautology.
- Proof: We need to show the following two things:
 - (1) An initial sequent is a tautology.
 - (2) For each inference rule, if all the sequents above are tautologies, the the bottom sequent is also a tautology.
 - For (1), an initial sequent $A \rightarrow A$ is $A \Rightarrow A$ and is a tautology.
 - For (2), we need to check for each inference rule. For example,

$$(\Rightarrow \mathsf{R}) \qquad \frac{\Gamma \to \Delta, A \quad B, \Pi \to \Sigma}{A \Rightarrow B, \Gamma, \Pi \to \Delta, \Sigma}$$

we need to show when $\Gamma_* \Rightarrow (\Delta^* \lor A)$ and $B \land \Pi_* \Rightarrow \Sigma^*$ are tautologies, $((A \Rightarrow B) \land \Gamma_* \land \Pi_*) \Rightarrow (\Delta^* \lor \Sigma^*)$ is also a tautology.

LK Soundness Theorem (2)

When v((A ⇒ B) ∧ Γ_{*} ∧ Π_{*}) = t, v(A ⇒ B) = t, v(Γ_{*}) = t and v(Π_{*}) = t.
(1) If v(A) = f, from v(Γ_{*} ⇒ (Δ^{*} ∨ A)) = t and v(Γ_{*}) = t, v(Δ^{*}) = t.
(2) If v(A) = t, from v(A ⇒ B) = t, v(B) = t. Since v(B ∧ Π_{*} ⇒ Σ^{*}) = t and v(Π_{*}) = t, v(Σ^{*}) = t.

In both cases $v(\Delta^* \vee \Sigma^*) = t$. Therefore, $((A \Rightarrow B) \land \Gamma_* \land \Pi_*) \Rightarrow (\Delta^* \vee \Sigma^*)$ is a tautology.

- For other rules, we can show the bottom sequent is a tautology when the above sequents are tautologies.
- We have shown that LK framework is sound.

LK Completeness Theorem (1)

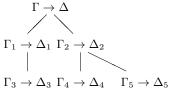
- Theorem: If $\Gamma \to \Delta$ is a tautology, it is provable in LK without using cut inference rule.
- **Proof:** First, define the decomposition of a sequent as follows:

$$\begin{split} \Gamma & \rightarrow \Delta_1, A \wedge B, \Delta_2 \quad \Rightarrow \quad \Gamma \rightarrow \Delta_1, A, \Delta_2 \quad \text{and} \quad \Gamma \rightarrow \Delta_1, B, \Delta_2 \\ \Gamma_1, A \wedge B, \Gamma_2 \rightarrow \Delta \quad \Rightarrow \quad \Gamma_1, A, B, \Gamma_2 \rightarrow \Delta \\ \Gamma & \rightarrow \Delta_1, A \vee B, \Delta_2 \quad \Rightarrow \quad \Gamma \rightarrow \Delta_1, A, B, \Delta_2 \\ \Gamma_1, A \vee B, \Gamma_2 \rightarrow \Delta \quad \Rightarrow \quad \Gamma_1, A, \Gamma_2 \rightarrow \Delta \quad \text{and} \quad \Gamma_1, B, \Gamma_2 \rightarrow \Delta \\ \Gamma & \rightarrow \Delta_1, A \Rightarrow B, \Delta_2 \quad \Rightarrow \quad A, \Gamma \rightarrow \Delta_1, B, \Delta_2 \\ \Gamma_1, A \Rightarrow B, \Gamma_2 \rightarrow \Delta \quad \Rightarrow \quad \Gamma_1, \Gamma_2 \rightarrow \Delta, A \quad \text{and} \quad \Gamma_1, B, \Gamma_2 \rightarrow \Delta \\ \Gamma & \rightarrow \Delta_1, \neg A, \Delta_2 \quad \Rightarrow \quad A, \Gamma \rightarrow \Delta_1, \Delta_2 \\ \Gamma_1, \neg A, \Gamma_2 \rightarrow \Delta \quad \Rightarrow \quad \Gamma_1, \Gamma_2 \rightarrow \Delta, A \end{split}$$

A sequent is decomposed into one or two sequents.

LK Completeness Theorem (2)

- Two facts about decomposition:
 - The number of logical connectives are less in the decomposed sequents.
 - If a sequent is a tautology, its decompositions are tautologies.
- Apply decomposition repeatedly:



• Sequents at the bottom row do not contain logical connectives.

- Complete decomposition tree
- If $\Gamma \to \Delta$ is a tautology, the bottom row of the complete decomposition contains tautology sequents containing propositional variables (no logical connectives).

Tatsuya Hagino (Faculty of Environment and

Fundamentals of Logic

LK Completeness Theorem (3)

 A sequent p₁,..., p_m → q₁,..., q_n of propositional variables is a tautology if and only if one of p_i is equal to one of q_j.

• $\Gamma_1, A, \Gamma_2 \to \Delta_1, A, \Delta_2$ is provable without cut rule.

- Apply weakening and exchange to initial sequent $A \rightarrow A$.
- When $\Gamma \to \Delta$ is decomposed into $\Gamma_1 \to \Delta_1$ and $\Gamma_2 \to \Delta_2$, if $\Gamma_1 \to \Delta_1$ and $\Gamma_2 \to \Delta_2$ are provable without cut, $\Gamma \to \Delta$ is also provable without cut.
 - For each decomposition, use rules for logical connectives, exchange and contraction.
- Therefore, if a sequent is a tautology, using its complete decomposition it is provable.
- LK framework is complete.
- This proof provides an algorithm to check whether a sequent is provable or not.

Example

• Find the complete decomposition of $\to ((p \Rightarrow q) \Rightarrow p) \Rightarrow p$ and find its proof figure without cut.

Cut Elimination Theorem

- Theorem: If $\Gamma\to \Delta$ is provable in LK, there exists a proof figure of $\Gamma\to \Delta$ without cut.
 - **Proof:** Since a provable sequent is a tautology, it is provable without cut.

• Theorem: Any formula in a cut free proof figure of $\Gamma \to \Delta$ is a subformula of $\Gamma \to \Delta$.

Cut Elimination Theorem

• Find a proof figure of $\rightarrow (A \Rightarrow B) \lor (B \Rightarrow A)$ without cut.

Duality

• (¬L) and (¬R) is symmetrical by exchanging left and right of $\Gamma \to \Delta$.

$$(\neg \mathsf{L}) \quad \frac{\Gamma \to \Delta, A}{\neg A, \Gamma \to \Delta} \qquad (\neg \mathsf{R}) \quad \frac{A, \Gamma \to \Delta}{\Gamma \to \Delta, \neg A}$$

• Inference rules for \vee and \wedge are symmetrical by replacing left and right and \vee and $\wedge.$

$$\begin{array}{ll} (\wedge \mathsf{R}) & \frac{\Gamma \to \Delta, A \quad \Gamma \to \Delta, B}{\Gamma \to \Delta, A \wedge B} & (\vee \mathsf{L}) & \frac{A, \Gamma \to \Delta \quad B, \Gamma \to \Delta}{A \vee B, \Gamma \to \Delta} \\ (\wedge \mathsf{L1}) & \frac{A, \Gamma \to \Delta}{A \wedge B, \Gamma \to \Delta} & (\vee \mathsf{R1}) & \frac{\Gamma \to \Delta, A}{\Gamma \to \Delta, A \vee B} \\ (\wedge \mathsf{L2}) & \frac{B, \Gamma \to \Delta}{A \wedge B, \Gamma \to \Delta} & (\vee \mathsf{R2}) & \frac{\Gamma \to \Delta, B}{\Gamma \to \Delta, A \vee B} \end{array}$$

• **Duality Theorem:** Let A and B be formulae without \Rightarrow . Let \tilde{A} and \tilde{B} be formulae A and B replacing \lor and \land . If $A \rightarrow B$ is provable, $\tilde{B} \rightarrow \tilde{A}$ is also provable.

Hilbert Framework

- In LK framework, there is only one axiom (for initial sequent) and a lot of inference rules.
- In Hilbert framework, there are several axioms, but only one inference rule (modus ponens).

•
$$A \Rightarrow (B \Rightarrow A)$$

• $(A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))$
• $A \Rightarrow (A \lor B)$
• $(A \Rightarrow C) \Rightarrow ((B \Rightarrow C) \Rightarrow ((A \lor B) \Rightarrow C))$
• $(A \land B) \Rightarrow A$
• $(A \land B) \Rightarrow B$
• $(C \Rightarrow A) \Rightarrow ((C \Rightarrow B) \Rightarrow (C \Rightarrow (A \land B)))$
• $(A \Rightarrow B) \Rightarrow ((A \Rightarrow \neg B) \Rightarrow \neg A)$
• $A \Rightarrow (\neg A \Rightarrow B)$
• $A \lor (\neg A$

Summary

- Soundness of LK framework
 - Any sequent which is provable in LK is a tautology.
- Completeness of LK framework
 - A tautology is provable in LK.
 - There is an algorithm of checking whether a formula is provable or not.
- Properties of LK framework
 - cut elimination theorem
 - duality theorem
- Hilbert framework