FUNDAMENTALS OF LOGIC NO.2 PROPOSITION AND TRUTH VALUE

Tatsuya Hagino hagino@sfc.keio.ac.jp

lecture URL

https://vu5.sfc.keio.ac.jp/slide/

Proposition

- A Proposition is a statement of which truth does not change (i.e. always true or always false).
 - `1 < 2'
 - `There are infinitely many prime numbers.'
 - `A triangle has equal edges.'
 - `Any even number can be expressed as a sum of two prime numbers.' (Gold Bach's Conjecture)
 - `Taro likes Hanako.'
 - `The headquarter of Keio University is at SFC.'
 - `Keio University is a national university.'
- If a statement contains a variable, it is not a proposition.
 The truth may change depending on the variable.
 - x < 5'
 - `Taro likes *A*.'

Propositional Variable

- A propositional variable represents a proposition which cannot be decomposed.
 - It represents an atomic statement.
 - *p*,*q*,*r*,…
- Non atomic statements:
 - A compound statement is not basic because it can be decomposed into smaller statements.
 - `Taro likes Hanako and Hanako likes Taro.'
 - `If the wind blows, the bucket makers make money.'
 - `Taro comes to SFC using bus or bicycle'

Compound Proposition

- Propositions can be combined.
 - A compound statement is composed of some atomic statements.
- There are four ways of composition:

Connective	Symbol	Name	Meaning	Other Symbols
and	Λ	conjunction	both hold	∩&
or	V	disjunction	one of them holds	U I
imply	\rightarrow	conditional	under some condition, it holds	$\supset \Rightarrow$
not		negation	the reverse holds	~

Logical Formula

• A logical formula represents a compound proposition.

Definition

- A propositional variable is a logical formula.
- If *A* and *B* are logical formulae, the followings are also logical formulae:
 - $(A \land B)$
 - $(A \lor B)$
 - $(A \rightarrow B)$
 - (¬A)
- Example

•
$$(p \rightarrow q)$$

•
$$(p \rightarrow (q \lor (\neg r)))$$

• $(\neg((p \land q) \rightarrow (r \lor p)))$

Omission of Parenthesis

- Too many parentheses.
 - Omit some of them if there is no confusion.
 - Omit out most parentheses.
 - Give priority to connectives.

 $\cdot \neg > \land > \lor \rightarrow$

• \wedge and \vee are left associative and \rightarrow is right associative.

•
$$p \land q \land r \equiv (p \land q) \land r$$

•
$$p \lor q \lor r \equiv (p \lor q) \lor r$$

•
$$p \to q \to r \equiv p \to (q \to r)$$

• Example:

- `¬' has more priority than ` \wedge ', `¬' connects stronger than ` \wedge '. Therefore, `¬ $p \wedge q$ ' means ` $((\neg p) \wedge q)$ '.
- $p \rightarrow q \lor \neg r$ means
- $\neg \neg p \rightarrow p$ means
- $p \lor \neg (q \to p)$ means

Creating Logical Formulae

- Let p represent `Taro likes Hanako', q represent `Taro likes Momoko' and r represent `Hanako likes Taro'.
- Write the following statements as logical formulae.
 - `Taro likes both Hanako and Momoko.'
 - `Taro likes Hanako or Momoko.'
 - `Taro likes Hanako, but Hanako does not like him.'
 - `If Taro likes Hanako, Hanako also likes him.'
 - `If Taro likes Hanako and not Momoko, Hanako likes him.'
 - `Hanako likes Taro who likes Momoko.'

Truth Table

- A proposition has a value of true(T) or false(F).
 - A proposition is either true or false, not both.
 - The negation of true is false, and the negation of false is true.
- The truth value of a logical formula depends on the true value of propositional variables in the formula.
- If a formula consists of connecting two formulae with a logical connective, its truth value can be determined from the true value of two sub formulae.
- The following *truth tables* show truth value of each logical connective.

Exclusive Or

- $A \vee B$ is true if A or B is true.
 - When A and B are true, $A \vee B$ is true.
- exclusive or, xor
 - Exclude the case when both *A* and *B* are true.
 - It is true when only one of A or B is true.

 $A \oplus B$ is also used for exclusive or.

Calculating Truth Value of a Formula

• When a formula A contains propositional variables p_1, p_2, \ldots, p_n , the truth value of A can be calculated from the truth value of

 $p_1, p_2, ..., p_n$.

- Starting form the truth value of p_1, p_2, \ldots, p_n , using the truth value table of each connective, the truth value of the formula can be calculated.
- Example
 - Truth value of $p \rightarrow q \vee \neg p$

р	q	$\neg p$	$q \lor \neg p$	$p \rightarrow q \lor \neg p$
Т	Т	F	Т	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

Exercise

• Calculate the truth value of $p \lor \neg (q \rightarrow p)$.

p	q	$q \rightarrow p$	$\neg (q \rightarrow p)$	$p \lor \neg (q \to p)$
Т	Т			
Т	F			
F	Т			
F	F			

Tautology

- A is a *tautology* if A is always true no matter what the truth value of propositional variables p_1, p_2, \ldots, p_n inside A.
 - A is also called valid.
 - There are 2^n comination of truth value of p_1, p_2, \ldots, p_n .
 - By checking all the cases, we can determine whether *A* is a tautology or not.

• Theorem:

- It is *decidable* whether a given logical formula is a tautology or not.
- Example: $p \land (p \rightarrow q) \rightarrow q$ is a tautology.

p	q	$p \rightarrow q$	$p \land (p \rightarrow q)$	$p \land (p \rightarrow q) \rightarrow q$
Т	Т	Т	Т	Т
Т	F	F	F	Т
F	Т	Т	F	Т
F	F	Т	F	Т

Exercise

• Show that $p \rightarrow p$ is a tautology.

• Show that $(p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$ is also a tautology.

p	q	$p \rightarrow q$	$\neg q$	$\neg p$	$\neg q \rightarrow \neg p$	$(p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$
Т	T					
Т	F					
F	T					
F	F					

Summary

- Mathematical Logic
- Proposition
 - Propositional variables
 - Logical connectives
 - Logical formulae
- Truth value
 - Truth table of logical connectives
 - Tautologies