FUNDAMENTALS OF LOGIC NO.3 NORMAL FORMS

Tatsuya Hagino hagino@sfc.keio.ac.jp

lecture URL

https://vu5.sfc.keio.ac.jp/slide/

So Far

- What is Logic?
 - mathematical logic
 - symbolic logic
- Proposition
 - A statement of which truth does not change.
 - propositional variables
 - logical connectives: \land , \lor , \rightarrow , \neg
 - logical formula
- Truth table
 - truth value of logical connectives
 - tautology = always true

Sub Formula

- The truth value of *A* can be calculated from truth values of *sub formulae* of *A*.
- Definition: Sub Formulae
 - 1. A itself is a sub formulae of A.
 - 2. If A is $(B \land C)$, $(B \lor C)$ or $(B \to C)$, sub formulae of B and C are sub formulae of A.
 - 3. If A is $(\neg B)$, sub formulae of B are sub formulae of A.
- Example
 - List of the sub formulae of $(p \rightarrow \neg q) \lor (q \land r)$.

Assignment

- An assignment is a map from the set of propositional variables V to the set of truth value {T, F}.
 - It assigns true or false to all the propositional variables.
 - Example: When $V = \{p, q\}$, if v(p) = T and v(q) = F, v is an assignment.
- An assignment v can be uniquely extended to a map from the set of logical formulae Φ to {T, F}.

1.
$$v(A \land B) = T \Leftrightarrow v(A) = v(B) = T$$

2.
$$v(A \lor B) = T \Leftrightarrow v(A) = T \text{ or } v(B) = T$$

3.
$$v(A \rightarrow B) = T \Leftrightarrow v(A) = F \text{ or } v(B) = T$$

4.
$$v(\neg A) = T \Leftrightarrow v(A) = F$$

- Here, `⇔' is a meta symbol expressing necessary and sufficient condition.
- A logical formula *A* is a tautology.

 \Leftrightarrow For any assignment v, v(A) = T.

Necessary and Sufficient Condition

- When $A \rightarrow B$ holds;
 - *A* is a *sufficient condition* for *B*.
 - *B* is a *necessary condition* for *A*.
- Example:
 - $x = 2 \rightarrow x^2 = 4$
 - x = 2 is sufficient for $x^2 = 4$ to hold.
 - $x^2 = 4$ is not sufficient for x = 2 to hold. It is just a necessary condition.
 - When `If Taro likes Hanako, Hanako likes Taro' holds:
 - `Taro likes Hanako' is sufficient for 'Hanako liked Taro', but
 - 'Hanako likes Taro' is just necessary for `Taro likes Hanako'.

Satisfiability

- Dual concept of tautology
 - A formula A is satisfiable if there is an assignment v and v(A) = T.
 - If a formula is not satisfiable, it is *unsatisfiable*.
- Theorem:
 - A necessary and sufficient condition of a formula *A* being unsatisfiable is ¬*A* is a tautology.
- Exercise:
 - Find all the combinaron of p, q, r assignment to make the value

 $((p \lor q) \to r) \lor (p \land q)$

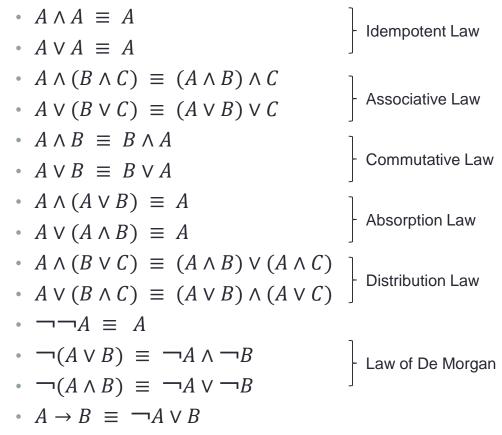
false.

Equivalent Formula

• $(A \rightarrow B) \land (B \rightarrow A)$ will be abbreviated to $A \equiv B$.

7

- A and B are *equivalent*.
- $v(A \equiv B) = T \Leftrightarrow v(A) = v(B)$
- Theorem: The following formulae are tautologies:



Examples

Idempotent

- $A \wedge A \equiv A$
- p = `Taro likes Hanako'
- $p \land p \equiv p$
- Contraposition
 - $A \to B \equiv \neg B \to \neg A$
 - $\neg B \rightarrow \neg A$ is the contraposition of $A \rightarrow B$.
 - What is the contraposition of `If you are scolded by your teacher, yu study hard'?

Double Negation

- $\neg \neg A \equiv A$
- `I don't know nothing.' ≡ `I know something.'?
- `I don't dislike you.' ≡ `I like you.'?

Propositional Constant

- For convenience, we have two propositional constants representing true and false.
 - \top and \bot are formulae.
 - For any assignment v, v(T) = T and $v(\bot) = F$.
- Tautologies
 - $A \land \neg A \equiv \bot$
 - $A \lor \neg A \equiv \top$
 - $A \lor \bot \equiv A$
 - $A \lor \top \equiv \top$
 - $A \wedge \top \equiv A$
 - $\bullet \ A \land \bot \equiv \bot$
 - $\neg \top \equiv \bot$
 - $\bullet \ \neg \perp \equiv \top$
 - $\bullet \ \neg A \ \equiv \ A \rightarrow \perp$
 - $\bullet \ A \ \equiv \ \top \to A$

Logical Equivalence

- If $A \equiv B$ is a tautology, A and B are *logically equivalent*.
- $A \sim B$ is used when A and B are logically equivalent.
 - `~' is not a logical symbol in the logic, but is a meta symbol which represents `logically equivalent'.
- Theorem: The followings hold for logical equivalence:
 - 1. $A \sim A$
 - 2. If $A \sim B$, then $B \sim A$.
 - 3. If $A \sim B$ and $B \sim C$, then $A \sim C$.
 - If A ~ B, then C[A/p] ~ C[B/p] where C[A/p] stand for replacing all the occurrence of logical variables p inside C with a formula A.
- This means that logically equivalent formulae can be replaced each other without changing the meaning.

Extending Disjunction and Conjunction

- For n formulae A_1, \ldots, A_n ,
 - $\bigvee_{i=1}^{n} A_i$ represents $(\cdots ((A_1 \lor A_2) \lor A_3) \lor \cdots \lor A_n)$, and
 - $\bigwedge_{i=1}^{n} A_i$ represents $(\cdots ((A_1 \land A_2) \land A_3) \land \cdots \land A_n)$.
- Under the logical equivalence, parentheses may be omitted.

•
$$\bigvee_{i=1}^{n} A_i \sim A_1 \lor A_2 \lor A_3 \lor \cdots \lor A_n$$

•
$$\bigwedge_{i=1}^{n} A_i \sim A_1 \wedge A_2 \wedge A_3 \wedge \cdots \wedge A_n$$

Normal Form

- Literal

 - Example: p and $\neg q$ are literals, but $\neg \neg r$ is not.
- Disjunctive Normal Form
 - For any formula, there is an equivalent logical formula of the form $\bigvee_{i=1}^{m} \bigwedge_{j=1}^{n_i} A_{i,j}$ where $A_{i,j}$ are literals.
 - $(A_{1,1} \land A_{1,2} \land \dots \land A_{1,n_1}) \lor (A_{2,1} \land A_{2,2} \land \dots \land A_{2,n_2}) \lor \dots \lor (A_{m,1} \land A_{m,2} \land \dots \land A_{m,n_m})$
- Conjunctive Normal Form
 - For any formula, there is an equivalent logical formula of the form $\bigwedge_{i=1}^{m} \bigvee_{j=1}^{n_i} A_{i,j}$ where $A_{i,j}$ are literals.
 - $(A_{1,1} \vee A_{1,2} \vee \cdots \vee A_{1,n_1}) \wedge (A_{2,1} \vee A_{2,2} \vee \cdots \vee A_{2,n_2}) \wedge \cdots \wedge (A_{m,1} \vee A_{m,2} \vee \cdots \vee A_{m,n_m})$

Converting to Disjunctive Normal Form

- How to convert a give logical formula to a disjunctive normal form:
 - 1. Using $A \rightarrow B \sim \neg A \lor B$, remove ` \rightarrow '.
 - 2. Using $\neg (A \lor B) \sim \neg A \land \neg B$ and $\neg (A \land B) \sim \neg A \lor \neg B$, move `¬' inward until placed in front of propositional variables.
 - 3. Using $\neg \neg A \sim A$, replace more than two `¬' with only one or none.
 - 4. Using $A \land (B \lor C) \sim (A \land B) \lor (A \land C)$, move ` \land ' inside ` \lor '.

Examples:

•
$$(p \rightarrow q) \rightarrow r$$

1.
2.
3.
4.
• $\neg (p \rightarrow q \land r)$
1.
2.
3.
4.
4.

Exercises:

• Find a disjunctive normal form of $((p \rightarrow q) \rightarrow p) \rightarrow p$.

• Find a disjunctive normal form of $(p \rightarrow p \land \neg q) \land (q \rightarrow q \land \neg p)$.

Exercise

• Find a conjunctive normal form of $((p \rightarrow q) \rightarrow p) \rightarrow p$.

• Find a conjunctive normal form of $\neg (p \rightarrow q) \land ((q \rightarrow s) \rightarrow r)$.

Conversion Using Truth Table

- A disjunctive normal form $\bigvee_{i=1}^{m} \bigwedge_{j=1}^{n_i} A_{i,j}$ expressing the condition when the formula becomes true.
- Using the truth table of $\neg(p \rightarrow q \land r)$, find an equivalent disjunctive normal form.

p	q	r	$q \wedge r$	$p \rightarrow q \wedge r$	$\neg (p \rightarrow q \land r)$
Т	Т	Т			
Т	Т	F			
Т	F	Т			
Т	F	F			
F	Т	Т			
F	Т	F			
F	F	Т			
F	F	F			

• Picking up the lines with T, a disjunctive normal form of $\neg(p \rightarrow q \land r)$ is:

Restricting Logical Connectives

- A formula may use four kinds of logical connectives:
 ∧, ∨, →, ¬
- Using $A \rightarrow B \sim \neg A \lor B$, ` \rightarrow ' is not necessary. • \land , \lor , \neg
- Using *A* ∧ *B* ~ ¬(¬*A* ∨ ¬*B*), `∧' can be expressed by `¬' and `∨'.
 ∨, ¬
- Using *A* ∨ *B* ~ ¬(¬*A* ∧ ¬*B*), `∨' can be expressed by `¬' and `∧'.
 - \land , \neg

Summary

- Logical Formula
 - sub formula
 - assignment
 - equivalent logical formula
- Normal Form
 - Disjunctive Normal Form
 - Conjunctive Normal Form
- Restricting Logical Connectives