FUNDAMENTALS OF LOGIC NO.8 SEMANTICS OF PREDICATE LOGIC

Tatsuya Hagino hagino@sfc.keio.ac.jp

lecture URL

https://vu5.sfc.keio.ac.jp/slide/

So Far

- Propositional Logic
 - Logical connectives (\land , \lor , \rightarrow , \neg)
 - Truth value table
 - Tautology
 - Normal form
 - Axiom and proof
 - LK framework and NK framework
 - Soundness and completeness
- Predicate Logic
 - Logical formula (language, term)
 - Quantifier ($\forall x P(x), \exists x P(x)$)
 - Bound and free variables
 - Closed formula

Predicate Logic

- From propositional logic to predicate logic
 - Extend to handle properties and relations of objects
 - Object variables, constants and predicates
- Predicate Logic
 - Use predicates instead of propositional variables
 - Logical connectives: ∧, ∨, →, ¬
 - Quantifiers: $\forall x, \exists x$

Write in Predicate Logic

- Let *S*, *M*, *W*, *H*, *T* and *L* be as follows:
 - S(x) = "x is an SFC student",
 - B(x) = "x is a boy",
 - G(x) = "x is a girl",
 - H(x) = "x is handsome",
 - T(x) = "x is tall", and
 - L(x, y) = "x likes y".
- Write the following statements in predicate logic:
 - 1. There are boy students in SFC.
 - 2. SFC students are handsome.
 - 3. SFC boy students are handsome.
 - 4. There are handsome boy SFC students.
 - 5. SFC girl students are tall.

cont.

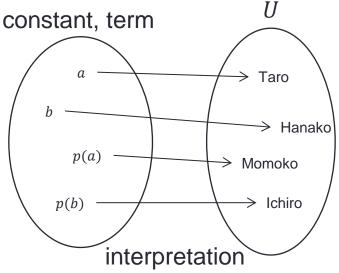
- 6. Some SFC boy students are not tall.
- 7. Handsome SFC students are tall.
- 8. Handsome SFC students are not necessarily tall.
- 9. SFC boy students are either tall or handsome.
- 10. Girls like tall boys.
- 11. Girls in SFC like boys who are tall and handsome.
- 12. A tall boy is liked by any girls.

Semantics of Predicate Logic

- In order to determine truth value of predicate logic formulae, the set of objects need to be selected.
- Domain
 - A set U of objects

Interpretation

- Each constant is mapped to an element in U
- Each variable has any value in U
- Each function symbol us mapped to a function on U
- Each predicate symbol is mapped to a predicate on U
- Structure
 - A pair of domain U and interpretation σ
 - $\langle U, \sigma \rangle$



Definition: Structure

- For a language *L*, its structure $\mu = \langle U, \sigma \rangle$ is defined as follow:
 - 1. *U* is a non empty set. (domain of μ)
 - 2. σ is a map which maps constants, function symbols and predicate symbols of *L* to elements, functions and predicates on *U*, respectively.
 - a. If *c* is a constant, $c^{\sigma} \in U$.
 - b. If *f* is an *n*-ary function symbol, f^{σ} is a function from U^n to *U*:

$$f^{\sigma}: U^n \to U$$

c. If *P* is a predicate with *n* variables (except equality), P^{σ} is a predicate on *U*: $P^{\sigma} \subseteq U^{n}$

 σ is called an *interpretation*.

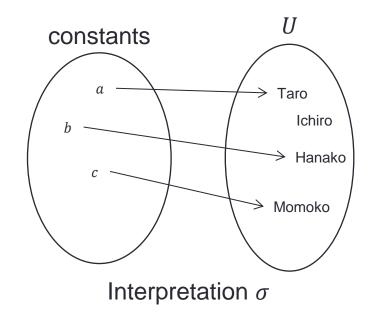
- Language $L[\mu]$
 - Language *L* with elements of domain *U* of $\mu = \langle U, \sigma \rangle$ added as constants.
 - For $u \in U$, u stands for its constant of $L[\mu]$.

•
$$u^{\sigma} = u$$

Example of Structure

- Language: L
 - constant: a, b, c
 - function: f(x)
 - predicate: S(x), P(x), L(x, y)
- Structure: $\mu = \langle U, \sigma \rangle$
 - *U* = {Taro, Ichiro, Hanako, Momoko}
 - constant:
 - $a^{\sigma} = \text{Trao}$
 - $b^{\sigma} = \text{Hanako}$
 - $c^{\sigma} = Momoko$
 - function:
 - $f^{\sigma}(\text{Taro}) = \text{Ichiro}$
 - $f^{\sigma}(\text{Ichiro}) = \text{Taro}$
 - $f^{\sigma}(\text{Hanako}) = \text{Momoko}$
 - $f^{\sigma}(Momoko) = Hanako$

- predicate:
 - $S^{\sigma} = \{\text{Taro, Hanako}\}$
 - $P^{\sigma} = \{\text{Hanako}\}$
 - $L^{\sigma} = \{(Taro, Hanako), (Momoko, Ichiro), (Hanako, Taro)\}$



Interpretation of Formulae

• For a structure $\mu = \langle U, \sigma \rangle$, the meaning μ of a term *t* of $L[\mu]$ without variables is defined as follows:

1. If t is a constant c,
$$t^{\mu} = c^{\sigma}$$

2. If t is
$$f(t_1, \dots, t_n), t^{\mu} = f^{\sigma}(t_1^{\mu}, \dots, t_n^{\mu})$$

• For a closed formula A of $L[\mu]$, $\mu \models A$ means A holds in a structure $\mu = \langle U, I \rangle$, and $\mu \not\models A$ means A does not hold.

1. $\mu \models P(t_1, \dots, t_n) \iff (t_1^{\mu}, \dots, t_n^{\mu}) \in P^{\sigma}$ For the equality symbol, $\mu \models t_1 = t_2 \iff t_1^{\mu} = t_2^{\mu}$ 2. $\mu \models A \land B \iff \mu \models A$ and $\mu \models B$ 3. $\mu \models A \lor B \iff \mu \models A$ or $\mu \models B$ 4. $\mu \models A \rightarrow B \iff \mu \nvDash A$ or $\mu \models B$ 5. $\mu \models \neg A \iff \mu \nvDash A$ 6. $\mu \models \forall x A \iff$ for any element $u \in U, \mu \models A[u/x]$ 7. $\mu \models \exists x A \iff$ there is an element $u \in U$ which makes $\mu \models A[u/x]$

• If A is not closed, use its closure A* and

• $\mu \vDash A \iff \mu \vDash A^*$

Example of Interpretation

• Terms:

•
$$f(a)^{\mu} = f^{\sigma}(a^{\mu}) = f^{\sigma}(a^{\sigma}) = f^{\sigma}(\text{Taro}) = \text{Ichiro}$$

- $f(f(b))^{\mu} =$
- Formulae:
 - $\mu \models S(a) \iff a^{\mu} \in S^{\sigma} \iff \text{Taro} \in \{\text{Taro}, \text{Hanako}\}$

•
$$\mu \models L(a, f(c)) \iff (a^{\mu}, f(c)^{\mu}) \in L^{\sigma} \iff$$

•
$$\mu \models \forall x (P(x) \rightarrow S(x)) \iff$$

•
$$\mu \models \forall x(S(x) \rightarrow \exists y \ L(x, y)) \iff$$

Valid Formulae

- A is valid \iff
 - For any structure $\mu = \langle U, I \rangle, \ \mu \models A$
- Valid formulae

(where A does not contain x as a free variable, and y is a variable which does not appear in B.)

- 1. $\forall x A \equiv A$, $\exists x A \equiv A$
- 2. $\forall x B \equiv \forall y B[y/x]$, $\exists x B \equiv \exists y B[y/x]$
- 3. $A \land \forall x B \equiv \forall x (A \land B)$, $A \land \exists x B \equiv \exists x (A \land B)$
- 4. $A \lor \forall x B \equiv \forall x (A \lor B)$, $A \lor \exists x B \equiv \exists x (A \lor B)$
- 5. $\forall x \ B \land \forall x \ C \equiv \forall x (B \land C)$, $\exists x \ B \lor \exists x \ C \equiv \exists x (B \lor C)$

6.
$$\forall x B \lor \forall x C \to \forall x (B \lor C)$$
, $\exists x (B \land C) \to \exists x B \land \exists x C$

7.
$$\forall x \forall y D \equiv \forall y \forall x D$$
, $\exists x \exists y D \equiv \exists y \exists x D$

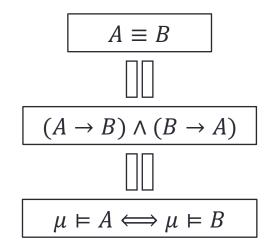
8. $\exists x \forall y D \rightarrow \forall y \exists x D$

9. $\forall x \ B \rightarrow \exists x \ B$

10.
$$\neg \forall x B \equiv \exists x \neg B$$
, $\neg \exists x B \equiv \forall x \neg B$

11. $A \to \forall x \ B \equiv \forall x (A \to B)$, $A \to \exists x \ B \equiv \exists x (A \to B)$ 12. $\forall x \ B \to A \equiv \exists x (B \to A)$, $\exists x \ B \to A \equiv \forall x (B \to A)$ 13. $\exists x (B \to C) \equiv \forall x \ B \to \exists x \ C$

- 14. $\forall x \ (B \to C) \to (\forall x \ B \to \forall x \ C)$
- 15. $\forall x \ (B \to C) \to (\exists x \ B \to \exists x \ C)$



Example of Valid and not Valid Formulae

•
$$S(x) = "x$$
 is a student", $T(x) = "x$ is a teacher".
O $\exists x (S(x) \land T(x)) \rightarrow \exists x S(x) \land \exists x T(x)$
English "
× $\exists x S(x) \land \exists x T(x) \rightarrow \exists x (S(x) \land T(x))$
English "

•
$$M(x) = "x \text{ is a boy"}, F(x) = "x \text{ is a girl"}.$$

O $\forall x M(x) \lor \forall x F(x) \rightarrow \forall x (M(x) \lor F(x))$
English "
× $\forall x (M(x) \lor F(x)) \rightarrow \forall x M(x) \lor \forall x F(x)$
English "

•
$$L(x, y) = "x \text{ likes } y"$$

O $\exists x \forall y L(x, y) \rightarrow \forall y \exists x L(x, y)$
English "
× $\forall x \exists y L(x, y) \rightarrow \exists y \forall x L(x, y)$
English "

"

....

н

н

Valid and Satisfiable

- Satisfiable
 - Let x_1, \dots, x_n be free variables of A, A is satisfiable \iff
 - For a structure $\mu = \langle U, I \rangle$ and elements $u_1, \cdots u_n, \mu \models A[u_1/x_1, \cdots u_n/x_n]$
- The necessary and sufficient condition of A not being satisfiable is ¬A being valid.

Prenex Formula

- Prenex formula
 - Let Q_1, \dots, Q_n be \forall or \exists and A be a formula without quantifiers:

$$Q_1 x_1 \cdots Q_n x_n A$$

is called a *prenex formula*.

- *A* ~ *B*
 - If $A \equiv B$ is valid, A and B are *logically equivalent*, and write it as $A \sim B$.
 - \sim is an equivalent relation.
- **Theorem**: For any formula *A*, there is a prenex formula A^+ and $A \sim A^+$.
- For a formula A, a prenex formula A⁺ where A ~ A⁺ is called its prenex normal form.
 - A prenex normal form may not be unique.

Example (1)

- Find an equivalent prenex normal form:
- 1. $(\exists y P(y) \lor Q(x)) \rightarrow \exists x R(x)$

Example (2)

- Find an equivalent prenex normal form:
- 2. $\exists x R(x, y) \rightarrow \forall y (P(y) \land \neg \forall z Q(z))$

Example (3)

- Find an equivalent prenex normal form:
- 3. $\exists x (\forall y (P(y) \rightarrow Q(x, z)) \lor \exists z (\neg \exists u R(z, u) \land Q(x, z)))$

Summary

- Semantics of predicate logic
 - domain
 - interpretation
 - structure = domain + interpretation
- $\mu \vDash A$
- Valid formulae
 - Satisfiable
- Prenex normal form