FUNDAMENTALS OF LOGIC NO.10 HERBRAND THEOREM

Tatsuya Hagino hagino@sfc.keio.ac.jp

lecture URL

https://vu5.sfc.keio.ac.jp/slide/

So Far

Propositional Logic

- Logical connectives (∧, ∨, →, ¬)
- Truth table
- Tautology
- Normal form
- Axiom and theorem
- LK framework
- Soundness and completeness

Predicate Logic

- Logical Formulas (language, term)
- Quantifiers $(\forall x P(x), \exists x P(x))$
- Closed formulae (bound and free variables)
- Semantics of predicate logic (domain, interpretation, structure)
- Valid formulae
- Prenex formulae
- LK framework for predicate logic
- Soundness and completeness

Exercise: Write in Predicate Logic

- Let *N*, *P*, *D* be the following predicates:
 - N(x) = "x is a natural number (1, 2, 3, 4, ...).
 - P(x) = "x is a prime number"
 - D(x,y) = x is divisible by y = y is a divisor of x
 - x < y =" x =" is smaller than y ="."
- Please write the following sentences in predicate logic.
 - 1. A prime number is a natural number.
 - 2. A prime number can be only divisible by 1 and itself.
 - 3. There are infinitely many prime numbers. (i.e. Given a natural number, there is always a prime number which is bigger than the given one.)
 - 4. A prime number bigger than 2 is odd.

Proof in Predicate Logic

Proof in Propositional Logic

- There is an algorithm to determine whether a give formula is provable or not.
- The algorithm is a finite method.

Proof in Predicate Logic

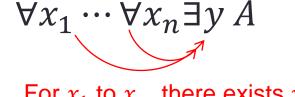
 There is no algorithm to determine whether a given formula is provable or not.

Partial Algorithm

- If a give formula is provable, the partial algorithm can show it.
- If it is not provable, the algorithm may not show anything.
- The algorithm may not terminate (i.e. not finite method).

Skolemization

- Prenex Normal Form
 - Any logical formula can be transformed to a formula of the form $Q_1x_1\cdots Q_nx_n$ A.
 - Q_i is either \forall or \exists .
 - A does not contain any quantifiers.
- ∀ themselves or ∃ themselves can be exchanged without changing the meaning, but ∀ and ∃ cannot be exchanged in general.
 - $\forall x \exists y A \not\equiv \exists y \forall x A$
- Skolemization
 - $\forall x_1 \cdots \forall x_n \exists y A$
 - y is determined by $x_1, ..., x_n$.
 - Write the relation as a new function f (Skolem function)
 - $\forall x_1 \cdots \forall x_n A[f(x_1, \dots, x_n)/y]$



For x_1 to x_n , there exists y

- **Theorem**: The satisfiability of $\forall x_1 \cdots \forall x_n \exists y A$ and $\forall x_1 \cdots \forall x_n A[f(x_1, \dots, x_n)/y]$ is the same.
 - Note: $\forall x_1 \cdots \forall x_n \exists y \ A \not\equiv \forall x_1 \cdots \forall x_n \exists y \ A[f(x_1, \dots, x_n)/y]$

Example of Skolemization

- Let L(x,y) = "x likes y" and S(x) = "x is an SFC student". Skolemize the following formulae:
- 1. $\forall x \exists y L(x, y)$

2. $\exists x \forall y L(x, y)$

3. $\exists x \exists y L(x,y)$

4. $\forall x (\forall y(x,y) \rightarrow S(x))$

Universal Prenex Normal Form

- By repeating Skolemization, a formula is transformed into a Prenex normal form with only universal quantifiers.
 - $\forall x_1 \cdots \forall x_n A$
 - A does not contain any quantifiers.
 - The satisfiability is the same as the original formula.
 - Called universal prenex normal form
- Furthermore, A can be converted into a conjunctive normal form.
 - $\forall x_1 \cdots \forall x_n \left(\left(L_{11} \vee \cdots \vee L_{1k_1} \right) \wedge \cdots \wedge \left(L_{m1} \vee \cdots \vee L_{mk_m} \right) \right)$
 - where L_{ij} is a literal (i.e. predicate or its negation)
- From duality, any formula can be transformed into the following form:

•
$$\exists x_1 \cdots \exists x_n \left(\left(L_{11} \land \cdots \land L_{1k_1} \right) \lor \cdots \lor \left(L_{m1} \land \cdots \land L_{mk_m} \right) \right)$$

Clause

Clause

- Disjunction of literals (predicate or its negation)
- $L_1 \vee \cdots \vee L_n$
- L_i is a predicate P or $\neg P$
- Converting a logical formula to clauses:
 - 1. Convert to prenex normal form
 - 2. Skolemize to replace existential quantifiers with functions
 - Convert to conjunctive normal form
 - 4. Divide conjunctions
- The satisfiability of the original logical formula is equivalent to the satisfiability of the converted clauses.

Example

• Convert $\forall x (\forall y (P(x,y) \lor Q(y)) \to R(x))$ to an equivalent set of clauses:

Herbrand Interpretation

- Herbrand universe H_L of language L
 - The set of terms of *L* which do not contain any variables.
 - In case L does not contain any constants, H_L is empty. To avoid this, add a constant to L before constructing H_L .

Formal definition of Herbrand universe

```
• H_0 = \{c \mid c \text{ is a constant of } L\}
```

- $H_{k+1} = H_k \cup \{f(t_1, ..., t_n) \mid f \text{ is an } n \text{ ary function in } L, t_1, ..., t_n \in H_k\}$
- $H_L = H_{\infty}$

Herbrand basis

- Atomic formulae with Herbrand Universe elements.
- $\{P(t_1, ..., t_n) \mid P \text{ is an } n \text{ ary predicate in } L, t_1, ..., t_n \in H_L\}$

Herbrand interpretation

- A subset of Herbrand basis J
- Atomic formulae in J are regarded as valid.

Herbrand Theorem

- Herbrand structure: $\mu = \langle H_L, J \rangle$
 - For each constant c: $c^J = c$
 - For each function symbol f: $f^{J}(t_1, ..., t_n) = f(t_1, ..., t_n)$
 - For each predicate symbol $P: \mu \models P(t_1, \dots, t_n) \iff (t_1, \dots, t_n) \in J$

Herbrand Theorem

- For a universal prenex normal form $\forall x_1 \cdots \forall x_n A$
 - A does not contain any quantifiers.
- The followings are equivalent:
 - $\forall x_1 \cdots \forall x_n A$ is unsatisfiable.
 - There exists a natural number m and H_L terms $t_{i1}, ..., t_{in}$ (i = 1, ..., m),

$$A[t_{11}/x_1,\ldots,t_{1n}/x_n] \wedge \cdots \wedge A[t_{m1}/x_1,\ldots,t_{mn}/x_n]$$

is unsatisfiable in any Herbrand structure $\langle H_L, J \rangle$.

Meaning of Herbrand Structure

Herbrand Structure

- Do not interpret the meaning of constants or function symbols, but treat them as symbols.
- Give interpretation of predicate symbols only.

Property

- The interpretation of constants and function symbols are left to the interpretation of predicates.
- For any interpretation (including interpreting constants and function symbols), we can create an interpretation in Herbrand structure.
- In order to check the satisfiability of a logical formula, the structures can be restricted to Herbrand structures.

Applying Herbrand Theorem

- Show that $\forall x \exists y (P(x) \land \neg P(y))$ is unsatisfiable using Herbrand theorem:
 - 1. Convert to universal prenex normal form: $\forall x (P(x) \land \neg P(f(x)))$
 - 2. Herbrand universe: $H = \{c, f(c), f(f(c)), f(f(c))\}$
 - 3. First, $P(x) \land \neg P(f(x))$ with assignment of x to c is $P(c) \land \neg P(f(c))$, and it is satisfiable.
 - 4. Next, combine the above formula with $P(x) \land \neg P(f(x))$ with assignment of x to f(c).

$$(P(c) \land \neg P(f(c))) \land (P(f(c)) \land \neg P(f(f(c))))$$

There is no Herbrand interpretation which make both $\neg P(f(c))$ and P(f(c)) valid. Therefore, it is unsatisfiable.

- 5. Using Herbrand theorem, $\forall x \exists y (P(x) \land \neg P(y))$ is unsatisfiable.
- Therefore the negation of the formula is valid.
 - $\neg \forall x \exists y (P(x) \land \neg P(y))$ is valid, i.e.
 - $\exists x \forall y (P(x) \rightarrow P(y))$ is valid.

Herbrand Theorem for Clauses

Ground Instance

A formula or clause without variables.

Herbrand Theorem for Clauses

- Let *S* be a set of clauses, the followings are equivalent:
 - S is unsatisfiable.
 - There is a finite set of ground instances of *S* which is unsatisfiable.

A partial algorithm of showing A is valid:

- 1. Convert $\neg A$ to a set of clauses S.
- 2. Assign elements of H_0 (constants) and get ground instances S_0 and check its unsatisfiability (S_0 is a finite set).
- 3. Assign elements of H_1 and get ground instances S_1 and check its unsatisfiability.
- 4. Assign elements of H_2 and get ground instances S_2 and check its unsatisfiability.
- 5. ...
- 6. Repeat until finding H_k of which ground instances S_k is unsatisfiable.

Dual Form of Herbrand Theorem

• Since the validity of A and the satisfiability of $\neg A$ is equivalent, there is a dual form of Herbrand Theorem.

- Herbrand Theorem (dual form)
 - If $\exists x_1 \cdots \exists x_n A$ is an existential prenex normal form,
 - A does not contain any quantifiers.
 - The followings are equivalent:
 - $\exists x_1 \cdots \exists x_n A$ is valid.
 - There exists a natural number m and H_L terms t_{i1}, \ldots, t_{in} $(i = 1, \ldots, m)$, and

$$A[t_{11}/x_1,...,t_{1n}/x_n] \vee \cdots \vee A[t_{m1}/x_1,...,t_{mn}/x_n]$$

is valid in any Herbrand structure $\langle H_L, J \rangle$.

Summary

Proof

- Propositional logic has an algorithm of proving formulae, but
- Predicate logic does not have.

Skolemization

- Universal prenex normal form
- Conversion to clauses

Herbrand Theorem

- Herbrand universe, interpretation and structure
- There is an partial algorithm for showing universal prenex normal form is unsatisfiable or not.