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前回まで
• 命題論理

• 論理結合子（∧，∨，→，￢）

• 真理値表

• トートロジー

• 標準形

• 公理と証明

• LK体系とNK体系

• 健全性と完全性

• 述語論理
• 述語論理式（言語，項）

• 量化記号（∀𝑥 𝑃(𝑥)，∃𝑥 𝑃(𝑥)）

• 閉じた論理式（束縛変数，自由変数）

• 述語論理の意味（構造）

• 恒真な論理式

• 冠頭論理式

• 述語論理のLK体系

• 健全性と完全性
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述語論理で書いてみよう
• 述語 𝑁, 𝑃, 𝐷 を以下のようにする．

• 𝑁(𝑥) = 「𝑥 は自然数である（1, 2, 3, 4, …）」
• 𝑃(𝑥) = 「𝑥 は素数である」
• 𝐷(𝑥, 𝑦) = 「自然数 𝑥 は自然数 𝑦 で割り切れる」＝「𝑦 は 𝑥 の約数」
• 𝑥 < 𝑦 = 「自然数 𝑥 は自然数 𝑦 より小さい」

• 関数 g, 𝑙 を以下のようにする．
• g(𝑥, 𝑦) = 「自然数 𝑥 と自然数 𝑦 の最大公約数」
• 𝑙(𝑥, 𝑦) = 「自然数 𝑥 と自然数 𝑦 の最小公倍数」

• 次の文章を述語論理式として書きなさい．
1. 素数は自然数である．

2. 素数は自らと1以外では割り切れない．

3. 素数は無限にある．（i.e. いくらでも大きな素数がある．）

4. 2より大きな素数は奇数である．（奇数＝2で割り切れない．）
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つづき
5. 最大公約数 𝑔(𝑥, 𝑦)は 𝑥 および 𝑦の約数である．

6. 最大公約数 𝑔(𝑥, 𝑦)は 𝑥 および 𝑦の約数の中で最も大きい．

7. 最小公倍数 𝑙(𝑥, 𝑦)は 𝑥 および 𝑦の倍数である．

8. 最小公倍数 𝑙(𝑥, 𝑦)は 𝑥 および 𝑦の倍数の中で最も小さい．
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述語論理における証明の問題
• 命題論理における証明

• 与えられた論理式が証明可能か否かを判定するアルゴリズムが存在す
る．

• アルゴリズムとは有限の手続き

• 述語論理における証明

• 与えられた論理式が証明可能か否かを判定するアルゴリズムは存在し
ない．

• 部分的なアルゴリズムの存在

• 与えられた論理式が証明可能である場合には，証明可能であることを
示すことができる．

• 証明可能でない場合には，どうなるか分からない．

• 証明可能でないものを，あると判断することはない．
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スコーレム化
• 冠頭標準形

• 任意の論理式を 𝑄1𝑥1⋯𝑄𝑛𝑥𝑛 𝐴の形にすることができる
• 𝑄1 は ∀ または ∃の量化記号
• 𝐴は量化記号を含まない

• ∀同士や ∃同士を交換しても意味は変わらないが，∀ と ∃は一般には交換で
きない．
• ∀𝑥∃𝑦 𝐴 ≢ ∃𝑦∀𝑥 𝐴

• スコーレム化
• ∀𝑥1⋯∀𝑥𝑛∃𝑦 𝐴
• ∃𝑦の 𝑦 は 𝑥1, … , 𝑥𝑛 にしたがって決まる
• 決まり方を新しい関数記号 𝑓 で表す(スコーレム関数)

• ∀𝑥1⋯∀𝑥𝑛 𝐴 𝑓(𝑥1, … , 𝑥𝑛)/𝑦

• 定理: ∀𝑥1⋯∀𝑥𝑛∃𝑦 𝐴が充足可能であることと，∀𝑥1⋯∀𝑥𝑛 𝐴 𝑓(𝑥1, … , 𝑥𝑛)/𝑦
が充足可能なことであることは同値である．

• 注意: ∀𝑥1⋯∀𝑥𝑛∃𝑦 𝐴 ≢ ∀𝑥1⋯∀𝑥𝑛 𝐴 𝑓(𝑥1, … , 𝑥𝑛)/𝑦
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∀𝑥1⋯∀𝑥𝑛∃𝑦 𝐴

𝑥1から𝑥𝑛に対して𝑦が存在



スコーレム化の例
• 𝐿 𝑥, 𝑦 =「𝑥 は 𝑦が好き」，𝑆 𝑥 =「𝑥はSFCの学生」としたとき，次
の論理式をスコーレム化しなさい．

1. ∀𝑥∃𝑦 𝐿(𝑥, 𝑦)

2. ∃𝑥∀𝑦 𝐿(𝑥, 𝑦)

3. ∃𝑥∃𝑦 𝐿(𝑥, 𝑦)

4. ∀𝑥 ∀𝑦 𝐿 𝑥, 𝑦 → 𝑆 𝑥
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全称冠頭論理式
• 冠頭論理式においてスコーレム化を繰り返すと，全称記号だ
けからなる冠頭論理式を得ることができる．
• ∀𝑥1⋯∀𝑥𝑛 𝐴

• 𝐴は量化記号を一つも含まない論理式

• もとの論理式と充足可能性については同値

• 全称冠頭論理式と呼ぶ

• さらに 𝐴 を論理積標準形に変形すると

• ∀𝑥1⋯∀𝑥𝑛 𝐿11 ∨ ⋯∨ 𝐿1𝑘1 ∧ ⋯∧ 𝐿𝑚1 ∨ ⋯∨ 𝐿𝑚𝑘𝑚

• 𝐿𝑖𝑗 はリテラル（述語あるいはその否定）

• 双対性から次の形にも変形することができる

• ∃𝑥1⋯∃𝑥𝑛 𝐿11 ∧ ⋯∧ 𝐿1𝑘1 ∨ ⋯∨ 𝐿𝑚1 ∧ ⋯∧ 𝐿𝑚𝑘𝑚
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節
• 節（clause）

• リテラル（述語あるいはその否定）を論理和で結合したもの

• 𝐿1 ∨ ⋯∨ 𝐿𝑛
• 𝐿𝑖 は述語 𝑃 または￢𝑃

• 述語論理式の節への分解
1. 冠頭論理式に変換する．

2. スコーレム化し，全称冠論理式にする．

3. 論理積標準形へ変換する．

4. 論理積ごとに分ける．

• 述語論理式の充足可能性の問題は，節の集合の充足可能性
の問題に還元することができる．
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節への変換例

• ∀𝑥 ∀𝑦 𝑃 𝑥, 𝑦 ∨ 𝑄 𝑦 → 𝑅 𝑥 を節に変換しなさい．
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エルブラン解釈
• 言語 𝐿のエルブラン領域（Herbrand universe） 𝐻𝐿

• 𝐿の変数を含まない項（基礎項）の集合

• 𝐿が定数を含まないときには 𝐻𝐿 が空集合となるため，定数記号を 𝐿 に付け加えて
からエルブラン領域を作る．

• 高さを使ったエルブラン領域の定義
• 𝐻0 = 𝑐 | 𝐿の定数

• 𝐻𝑘+1 = 𝐻𝑘 ∪ 𝑓 𝑡1, … , 𝑡𝑛 | 𝑓は𝐿の𝑛変数の関数記号，𝑡1, … , 𝑡𝑛 ∈ 𝐻𝑘
• 𝐻𝐿 = 𝐻∞

• エルブラン基底（Herbrand basis）
• エルブラン領域の要素を引数とした原始論理式全体

• 𝑃 𝑡1, … , 𝑡𝑛 | 𝑃は𝐿の𝑛変数の述語記号，𝑡1, … , 𝑡𝑛 ∈ 𝐻𝐿

• エルブラン解釈（Herbrand interpretation）
• エルブラン基底の部分集合 𝐽

• この部分集合に含まれる原始論式を真と考える
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エルブランの定理
• 言語 𝐿のエルブラン構造（Herbrand structure）𝜇 = 𝐻𝐿 , 𝐽

• 定数 𝑐: 𝑐𝐽 = 𝑐

• 関数記号 𝑓: 𝑓𝐽 𝑡1, … , 𝑡𝑛 = 𝑓(𝑡1, … , 𝑡𝑛)

• 述語記号 𝑃: 𝜇 ⊨ 𝑃 𝑡1, ⋯ , 𝑡𝑛 (𝑡1, … , 𝑡𝑛) ∈ 𝐽

• エルブランの定理
• ∀𝑥1⋯∀𝑥𝑛 𝐴 を言語 𝐿の全称冠頭論理式とする．

• 𝐴は量化記号を含まない．

• 次の2つは同値である．
• ∀𝑥1⋯∀𝑥𝑛 𝐴が充足不可能である．

• ある自然数 𝑚 と 𝐻𝐿 の項 𝑡𝑖1, … , 𝑡𝑖𝑛（𝑖 = 1, … ,𝑚）が存在し，

𝐴[𝑡11/𝑥1, . . . , 𝑡1𝑛/𝑥𝑛] ∧ ⋯∧ 𝐴[𝑡𝑚1/𝑥1, . . . , 𝑡𝑚𝑛/𝑥𝑛]

がどのエルブラン構造 𝐿 においても充足可能でない．
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エルブラン構造とは
• エルブラン構造

• 定数や関数記号に解釈を特に与えず，記号のままあつかう．

• 述語記号だけの解釈を与える．

• 特徴
• 定数や関数記号の解釈は述語の解釈に任せる．

• 任意の解釈(定数や関数記号の解釈を含む) に対応してエルブラン構造
での解釈を作ることができる．

• 論理式の真偽に関してはエルブラン構造を考えるだけで十分である．
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エルブランの定理の適用例
• ∀𝑥∃𝑦(𝑃 𝑥 ∧￢𝑃 𝑦 )が充足不可能なことをエルブランの定理を
使って示す．
1. 全称冠頭論理式に変換する: ∀𝑥(𝑃 𝑥 ∧￢𝑃 𝑓(𝑥) )

2. エルブラン領域: 𝐻 = 𝑐, 𝑓 𝑐 , 𝑓 𝑓 𝑐 , 𝑓 𝑓 𝑓 𝑐 , …

3. 𝑃 𝑥 ∧￢𝑃 𝑓(𝑥) の 𝑥 に 𝑐 を代入すると，𝑃 𝑐 ∧￢𝑃 𝑓(𝑐) であるが，こ
れは充足可能である．

4. 𝑃 𝑥 ∧￢𝑃 𝑓(𝑥) の 𝑥 に 𝑓 𝑐 を代入したものと，3の論理式との論理積
は

𝑃 𝑐 ∧￢𝑃 𝑓 𝑐 ∧ 𝑃 𝑓 𝑐 ∧￢𝑃 𝑓 𝑓 𝑐

となるが，￢𝑃 𝑓 𝑐 と 𝑃 𝑓 𝑐 を同時に真とするエルブラン解釈は存在
しないため充足不可能である．

5. エルブランの定理から ∀𝑥∃𝑦(𝑃 𝑥 ∧￢𝑃 𝑦 )は充足不可能である．

• この論理式が充足不可能なことから，この論理式の否定は恒真で
ある．
• ￢∀𝑥∃𝑦(𝑃 𝑥 ∧￢𝑃 𝑦 )は恒真，すなわち
• ∃𝑥∀𝑦(𝑃 𝑥 → 𝑃 𝑦 )は恒真
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節のエルブランの定理
• 基礎例（ground instance）

• 変数を含まない論理式あるいは節

• エルブランの定理（節の場合）
• 𝑆 を節の集合とするとき，以下の2つは同値である．

• 𝑆 が充足不可能である．
• 𝑆 から得られる基礎例の有限集合で充足不可能なものがある．

• 述語論理式 𝐴が恒真であることを証明する部分アルゴリズム
1. ￢𝐴 を節の集合 𝑆 に変換する．
2. エルブラン空間 𝐻0 の要素を代入してできた基礎例 𝑆0 が充足不可能か調
べる（𝑆0 は有限集合）．

3. 𝐻1 の要素を代入してできた基礎例 𝑆1 が充足不可能か調べる．
4. 𝐻2 の要素を代入してできた基礎例 𝑆2 が充足不可能か調べる．
5. ・ ・ ・
6. これを繰り返し 𝐻𝑘 の場合に充足不可能なことが分かれば，アルゴリズム
を停止する．
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エルブランの定理の双対形
• 𝐴 が恒真であることと ￢𝐴 が充足不可能なことが同値なので，
エルブランの定理を双対的に言い直すことができる．

• エルブランの定理（双対系）
• ∃𝑥1⋯∃𝑥𝑛 𝐴 を言語 𝐿の存在冠頭論理式とする．

• 𝐴は量化記号を含まない．

• 次の2つは同値である．

• ∃𝑥1⋯∃𝑥𝑛 𝐴が恒真である．

• ある自然数 𝑚 と 𝐻𝐿 の項 𝑡𝑖1, … , 𝑡𝑖𝑛（𝑖 = 1, … ,𝑚）が存在し，

𝐴[𝑡11/𝑥1, . . . , 𝑡1𝑛/𝑥𝑛] ∨ ⋯∨ 𝐴[𝑡𝑚1/𝑥1, . . . , 𝑡𝑚𝑛/𝑥𝑛]

がどのエルブラン構造 𝐿 においても真になる．
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まとめ
• 証明

• 命題論理の証明は自動的に行なうアルゴリズムがある

• 述語論理には存在しない

• スコーレム化

• 全称冠頭論理式

• 節への変換

• エルブランの定理
• エルブラン領域・解釈・構造

• 全称冠頭論理式の充足不可能性を示す部分アルゴリズム
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