FUNDAMENTALS OF LOGIC NO. 2 PROPOSITION AND TRUTH VALUE

Tatsuya Hagino
hagino@sfc.keio.ac.jp
lecture URL
https://vu5.sfc.keio.ac.jp/slide/

Proposition

- A Proposition is a statement of which truth does not change (i.e. always true or always false).
- ${ }^{\prime}$ < 2'
- `There are infinitely many prime numbers.'
- 'A triangle has equal edges.'
- `Any even number can be expressed as a sum of two prime numbers.' (Gold Bach's Conjecture)
- `Taro likes Hanako.'
- `The headquarter of Keio University is at SFC.'
- `Keio University is a national university.'
- If a statement contains variables, it is not a proposition. The truth may change depending on the variables.
- ' $x<5$ '
- `Taro likes $A . '$

Propositional Variable

- A propositional variable represents a proposition which cannot be decomposed.
- It represents an atomic statement.
- p, q, r, \cdots
- Non atomic statements:
- A compound statement is not basic because it can be decomposed into smaller statements.
- `Taro likes Hanako and Hanako likes Taro.'
- 'If the wind blows, the bucket makers prosper.'
- 'Taro comes to SFC using bus or bicycle'

Compound Proposition

- Propositions can be combined.
- A compound statement is composed of some atomic statements.
- There are four ways of composition:

Connective	Symbol	Name	Meaning	Other Symbols
and	\wedge	conjunction	both hold	$\cap \&$
or	\vee	disjunction	one of them holds	$\cup \mid$
imply	\rightarrow	conditional	under some condition, it holds	$\supset \Rightarrow$
not	\neg	negation	the reverse holds	\sim

Logical Formula

- A logical formula represents a compound proposition.
- Definition
- A propositional variable is a logical formula.
- If A and B are logical formulae, the followings are also logical formulae:
- $(A \wedge B)$
- $(A \vee B)$
- $(A \rightarrow B)$
- $(\neg A)$
- Example
- $(p \rightarrow q)$
- $(p \rightarrow(q \vee(\neg r)))$
- $(\neg((p \wedge q) \rightarrow(r \vee p)))$

Omission of Parenthesis

- Too many parentheses.
- Omit some of them if there is no confusion.
- Omit out most parentheses.
- Give priority to connectives.
- $\neg>\wedge>\vee \gg$
- \wedge and \vee are left associative and \rightarrow is right associative.
- $p \wedge q \wedge r \equiv(p \wedge q) \wedge r$
- $p \vee q \vee r \equiv(p \vee q) \vee r$
- $p \rightarrow q \rightarrow r \equiv p \rightarrow(q \rightarrow r)$
- Example:
- `ᄀ' has more priority than ` \wedge ', ` \({ }^{\prime}\) ' connects stronger than Therefore, \({ }^{\wedge} \neg p \wedge q\) ' means \({ }^{`}((\neg p) \wedge q)\) '.
- $p \rightarrow q \vee \neg r \quad$ means
- $\neg \neg p \rightarrow p \quad$ means
- $p \vee \neg(q \rightarrow p) \quad$ means

Creating Logical Formulae

- Let p represent `Taro likes Hanako', \(q\) represent `Taro likes Momoko' and r represent `Hanako likes Taro'.
- Write the following statements as logical formulae.
- `Taro likes both Hanako and Momoko.'
- `Taro likes Hanako or Momoko.'
- `Taro likes Hanako, but Hanako does not like him.'
- `If Taro likes Hanako, Hanako also likes him.'
- `If Taro likes Hanako and not Momoko, Hanako likes him.'
- `Hanako likes Taro who likes Momoko.'

Truth Table

- A proposition has a value of true (T) or false (F).
- A proposition is either true or false, not both.
- The negation of true is false, and the negation of false is true.
- The truth value of a logical formula depends on the true value of propositional variables in the formula.
- If a formula consists of connecting two formulae with a logical connective, its truth value can be determined from the true value of two sub formulae.
- The following truth tables show truth value of each logical connective.

$A \wedge B$		
$\searrow B$	T	F
T	T	F
F	F	F

$A \vee B$		
$\searrow B$	T	F
T	T	T
F	T	F

\grave{B}	T	F
T	T	F
F	T	T

A	$\neg A$
T	F
F	T

Exclusive Or

- $A \vee B$ is true if A or B is true.
- When A and B are true, $A \vee B$ is true.
- exclusive or, xor
- Exclude the case when both A and B are true.
- It is true when only one of A or B is true.

$A \vee B$		
$\searrow B$	T	F
T	T	T
F	T	F

$A \underline{\vee} B$		
$\not A B$	T	F
T	F	T
F	T	F

$A \oplus B$ is also used for exclusive or.

Calculating Truth Value of a Formula

- When a formula A contains propositional variables $p_{1}, p_{2}, \ldots, p_{n}$, the truth value of A can be calculated from the truth value of
$p_{1}, p_{2}, \ldots, p_{n}$.
- Starting form the truth value of $p_{1}, p_{2}, \ldots, p_{n}$, using the truth value table of each connective, the truth value of the formula can be calculated.
- Example
- Truth value of $p \rightarrow q \vee \neg p$

p	q	$\neg p$	$q \vee \neg p$	$p \rightarrow q \vee \neg p$
T	T	F	T	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

Exercise

- Calculate the truth value of $p \vee \neg(q \rightarrow p)$.

p	q	$q \rightarrow p$	$\neg(q \rightarrow p)$	$p \vee \neg(q \rightarrow p)$
T	T			
T	F			
F	T			
F	F			

Tautology

- A is a tautology if A is always true no matter what the truth value of propositional variables $p_{1}, p_{2}, \ldots, p_{n}$ inside A.
- A is also called valid.
- There are 2^{n} comination of truth value of $p_{1}, p_{2}, \ldots, p_{n}$.
- By checking all the cases, we can determine whether A is a tautology or not.
- Theorem:
- It is decidable whether a given logical formula is a tautology or not.
- Example: $p \wedge(p \rightarrow q) \rightarrow q$ is a tautology.

p	q	$p \rightarrow q$	$p \wedge(p \rightarrow q)$	$p \wedge(p \rightarrow q) \rightarrow q$
T	T	T	T	T
T	F	F	F	T
F	T	T	F	T
F	F	T	F	T

Exercise

- Show that $p \rightarrow p$ is a tautology.

p	$p \rightarrow p$
T	
F	

- Show that $(p \rightarrow q) \rightarrow(\neg q \rightarrow \neg p)$ is also a tautology.

p	q	$p \rightarrow q$	$\neg q$	$\neg p$	$\neg q \rightarrow \neg p$	$(p \rightarrow q) \rightarrow(\neg q \rightarrow \neg p)$
T	T					
T	F					
F	T					
F	F					

Summary

- Mathematical Logic
- Proposition
- Propositional variables
- Logical connectives
- Logical formulae
- Truth value
- Truth table of logical connectives
- Tautologies

