FUNDAMENTALS OF LOGIC NO.2 PROPOSITION AND TRUTH VALUE

Tatsuya Hagino hagino@sfc.keio.ac.jp

lecture URL

https://vu5.sfc.keio.ac.jp/slide/

Proposition

- A Proposition is a statement of which truth does not change (i.e. always true or always false).
 - `1 < 2'
 - There are infinitely many prime numbers.'
 - `A triangle has equal edges.'
 - `Any even number can be expressed as a sum of two prime numbers.' (Gold Bach's Conjecture)
 - Taro likes Hanako.'
 - The headquarter of Keio University is at SFC.
 - Keio University is a national university.'
- If a statement contains variables, it is not a proposition.
 The truth may change depending on the variables.
 - x < 5'
 - Taro likes A.'

Propositional Variable

- A propositional variable represents a proposition which cannot be decomposed.
 - It represents an atomic statement.
 - *p*, *q*, *r*, ···
- Non atomic statements:
 - A compound statement is not basic because it can be decomposed into smaller statements.
 - Taro likes Hanako and Hanako likes Taro.
 - If the wind blows, the bucket makers prosper.
 - `Taro comes to SFC using bus or bicycle'

Compound Proposition

- Propositions can be combined.
 - A compound statement is composed of some atomic statements.
- There are four ways of composition:

Connective	Symbol	Name	Meaning	Other Symbols
and	٨	conjunction	both hold	∩ &
or	V	disjunction	one of them holds	U
imply	\rightarrow	conditional	under some condition, it holds	⊃ ⇒
not	一	negation	the reverse holds	~

Logical Formula

A logical formula represents a compound proposition.

Definition

- A propositional variable is a logical formula.
- If A and B are logical formulae, the followings are also logical formulae:
 - $(A \wedge B)$
 - (A V B)
 - $(A \rightarrow B)$
 - $(\neg A)$

Example

- $(p \rightarrow q)$
- $(p \rightarrow (q \lor (\neg r)))$
- $(\neg((p \land q) \rightarrow (r \lor p)))$

Omission of Parenthesis

- Too many parentheses.
 - Omit some of them if there is no confusion.
 - Omit out most parentheses.
 - Give priority to connectives.

$$\bullet$$
 \neg $>$ \land $>$ \lor $>$ \rightarrow

- ∧ and ∨ are left associative and → is right associative.
 - $p \land q \land r \equiv (p \land q) \land r$
 - $p \lor q \lor r \equiv (p \lor q) \lor r$
 - $p \to q \to r \equiv p \to (q \to r)$
- Example:
 - `¬' has more priority than ` Λ ', `¬' connects stronger than ` Λ '. Therefore, `¬ $p \wedge q$ ' means ` $((\neg p) \wedge q)$ '.
 - $p \rightarrow q \vee \neg r$ means
 - $\neg \neg p \rightarrow p$ means
 - $p \lor \neg (q \rightarrow p)$ means

Creating Logical Formulae

- Let p represent `Taro likes Hanako', q represent `Taro likes Momoko' and r represent `Hanako likes Taro'.
- Write the following statements as logical formulae.
 - Taro likes both Hanako and Momoko.
 - Taro likes Hanako or Momoko.
 - `Taro likes Hanako, but Hanako does not like him.'
 - If Taro likes Hanako, Hanako also likes him.
 - If Taro likes Hanako and not Momoko, Hanako likes him.
 - Hanako likes Taro who likes Momoko.

Truth Table

- A proposition has a value of true(T) or false(F).
 - A proposition is either true or false, not both.
 - The negation of true is false, and the negation of false is true.
- The truth value of a logical formula depends on the true value of propositional variables in the formula.
- If a formula consists of connecting two formulae with a logical connective, its truth value can be determined from the true value of two sub formulae.
- The following truth tables show truth value of each logical connective.

Exclusive Or

- A V B is true if A or B is true.
 - When A and B are true, $A \lor B$ is true.
- exclusive or, xor
 - Exclude the case when both A and B are true.
 - It is true when only one of A or B is true.

$A \vee B$				
A^B	T	F		
T	T	T		
\overline{F}	T	F		

$$\begin{array}{c|cccc}
A & Y & B \\
\hline
A & T & F \\
\hline
T & F & T \\
\hline
F & T & F
\end{array}$$

 $A \oplus B$ is also used for exclusive or.

Calculating Truth Value of a Formula

- When a formula A contains propositional variables p_1, p_2, \ldots, p_n , the truth value of A can be calculated from the truth value of p_1, p_2, \ldots, p_n .
 - Starting form the truth value of p_1, p_2, \ldots, p_n , using the truth value table of each connective, the truth value of the formula can be calculated.

Example

• Truth value of $p \rightarrow q \vee \neg p$

p	q	$\neg p$	$q \vee \neg p$	$p \rightarrow q \vee \neg p$
T	T	F	T	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

Exercise

• Calculate the truth value of $p \lor \neg (q \rightarrow p)$.

p	q	$q \rightarrow p$	$p \lor \neg (q \rightarrow p)$
T	T		
T	F		
\overline{F}	T		
\overline{F}	F		

Tautology

- A is a *tautology* if A is always true no matter what the truth value of propositional variables p_1, p_2, \ldots, p_n inside A.
 - A is also called valid.
 - There are 2^n comination of truth value of p_1, p_2, \ldots, p_n .
 - By checking all the cases, we can determine whether A is a tautology or not.

Theorem:

- It is decidable whether a given logical formula is a tautology or not.
- Example: $p \land (p \rightarrow q) \rightarrow q$ is a tautology.

<i>p</i>	q	$p \rightarrow q$	$p \land (p \rightarrow q)$	$p \land (p \rightarrow q) \rightarrow q$
T	T	T	T	T
\overline{T}	F	F	F	T
\overline{F}	T	T	F	T
\overline{F}	F	T	F	T

Exercise

• Show that $p \rightarrow p$ is a tautology.

p	$p \rightarrow p$
T	
\overline{F}	

• Show that $(p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$ is also a tautology.

p	q	$p \rightarrow q$	-q	$\neg p$	$\neg q \rightarrow \neg p$	$(p \to q) \to (\neg q \to \neg p)$
T	T					
T	F					
F	T					
\overline{F}	F					

Summary

- Mathematical Logic
- Proposition
 - Propositional variables
 - Logical connectives
 - Logical formulae
- Truth value
 - Truth table of logical connectives
 - Tautologies