

FUNDAMENTALS OF LOGIC

NO.2 PROPOSITION AND TRUTH VALUE

Tatsuya Hagino

hagino@sfc.keio.ac.jp

lecture URL

<https://vu5.sfc.keio.ac.jp/slide/>

Proposition

- A *Proposition* is a statement of which truth does not change (i.e. always true or always false).
 - `1 < 2'
 - `There are infinitely many prime numbers.'
 - `A triangle has equal edges.'
 - `Any even number can be expressed as a sum of two prime numbers.' (Gold Bach's Conjecture)
 - `Taro likes Hanako.'
 - `The headquarter of Keio University is at SFC.'
 - `Keio University is a national university.'
- If a statement contains variables, it is not a proposition. The truth may change depending on the variables.
 - ` $x < 5'$
 - `Taro likes A.'

Propositional Variable

- A *propositional variable* represents a proposition which cannot be decomposed.
 - It represents an atomic statement.
 - p, q, r, \dots
- Non atomic statements:
 - A compound statement is not basic because it can be decomposed into smaller statements.
 - 'Taro likes Hanako and Hanako likes Taro.'
 - 'If the wind blows, the bucket makers prosper.'
 - 'Taro comes to SFC using bus or bicycle'

Compound Proposition

- Propositions can be combined.
 - A compound statement is composed of some atomic statements.
- There are four ways of composition:

Connective	Symbol	Name	Meaning	Other Symbols
and	\wedge	conjunction	both hold	\cap &
or	\vee	disjunction	one of them holds	\cup
imply	\rightarrow	conditional	under some condition, it holds	\supset \Rightarrow
not	\neg	negation	the reverse holds	\sim

Logical Formula

- A *logical formula* represents a compound proposition.

- **Definition**

- A propositional variable is a logical formula.
- If A and B are logical formulae, the followings are also logical formulae:
 - $(A \wedge B)$
 - $(A \vee B)$
 - $(A \rightarrow B)$
 - $(\neg A)$

- **Example**

- $(p \rightarrow q)$
- $(p \rightarrow (q \vee (\neg r)))$
- $(\neg((p \wedge q) \rightarrow (r \vee p)))$

Omission of Parenthesis

- Too many parentheses.
 - Omit some of them if there is no confusion.
 - Omit out most parentheses.
 - Give priority to connectives.
 - $\neg > \wedge > \vee > \rightarrow$
 - \wedge and \vee are left associative and \rightarrow is right associative.
 - $p \wedge q \wedge r \equiv (p \wedge q) \wedge r$
 - $p \vee q \vee r \equiv (p \vee q) \vee r$
 - $p \rightarrow q \rightarrow r \equiv p \rightarrow (q \rightarrow r)$
- Example:
 - \neg has more priority than \wedge , \neg connects stronger than \wedge . Therefore, $\neg p \wedge q$ means $((\neg p) \wedge q)$.
 - $p \rightarrow q \vee \neg r$ means
 - $\neg \neg p \rightarrow p$ means
 - $p \vee \neg (q \rightarrow p)$ means

Creating Logical Formulae

- Let p represent 'Taro likes Hanako', q represent 'Taro likes Momoko' and r represent 'Hanako likes Taro'.
- Write the following statements as logical formulae.
 - 'Taro likes both Hanako and Momoko.'
 - 'Taro likes Hanako or Momoko.'
 - 'Taro likes Hanako, but Hanako does not like him.'
 - 'If Taro likes Hanako, Hanako also likes him.'
 - 'If Taro likes Hanako and not Momoko, Hanako likes him.'
 - 'Hanako likes Taro who likes Momoko.'

Truth Table

- A proposition has a value of *true* (*T*) or *false* (*F*).
 - A proposition is either true or false, not both.
 - The negation of true is false, and the negation of false is true.
- The truth value of a logical formula depends on the true value of propositional variables in the formula.
- If a formula consists of connecting two formulae with a logical connective, its truth value can be determined from the true value of two sub formulae.
- The following *truth tables* show truth value of each logical connective.

$A \wedge B$		
A B	T	F
T	T	F
F	F	F

$A \vee B$		
A B	T	F
T	T	T
F	T	F

$A \rightarrow B$		
A B	T	F
T	T	F
F	T	T

$\neg A$	
A	$\neg A$
T	F
F	T

Exclusive Or

- $A \vee B$ is true if A or B is true.
 - When A and B are true, $A \vee B$ is true.
- *exclusive or*, xor
 - Exclude the case when both A and B are true.
 - It is true when only one of A or B is true.

		$A \vee B$	
		T	F
		T	T
A	B		
T	T	T	
F	T	F	

		$A \vee B$	
		T	F
		F	T
A	B		
T	F	F	
F	T	T	

$A \oplus B$ is also used for exclusive or.

Calculating Truth Value of a Formula

- When a formula A contains propositional variables p_1, p_2, \dots, p_n , the truth value of A can be calculated from the truth value of p_1, p_2, \dots, p_n .
 - Starting from the truth value of p_1, p_2, \dots, p_n , using the truth value table of each connective, the truth value of the formula can be calculated.
- Example
 - Truth value of $p \rightarrow q \vee \neg p$

p	q	$\neg p$	$q \vee \neg p$	$p \rightarrow q \vee \neg p$
T	T	F	T	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

Exercise

- Calculate the truth value of $p \vee \neg(q \rightarrow p)$.

p	q	$q \rightarrow p$	$\neg(q \rightarrow p)$	$p \vee \neg(q \rightarrow p)$
T	T			
T	F			
F	T			
F	F			

Tautology

- A is a *tautology* if A is always true no matter what the truth value of propositional variables p_1, p_2, \dots, p_n inside A .
 - A is also called *valid*.
 - There are 2^n combination of truth value of p_1, p_2, \dots, p_n .
 - By checking all the cases, we can determine whether A is a tautology or not.
- **Theorem:**
 - It is *decidable* whether a given logical formula is a tautology or not.
- Example: $p \wedge (p \rightarrow q) \rightarrow q$ is a tautology.

p	q	$p \rightarrow q$	$p \wedge (p \rightarrow q)$	$p \wedge (p \rightarrow q) \rightarrow q$
T	T	T	T	T
T	F	F	F	T
F	T	T	F	T
F	F	T	F	T

Exercise

- Show that $p \rightarrow p$ is a tautology.

p	$p \rightarrow p$
T	
F	

- Show that $(p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$ is also a tautology.

p	q	$p \rightarrow q$	$\neg q$	$\neg p$	$\neg q \rightarrow \neg p$	$(p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$
T	T					
T	F					
F	T					
F	F					

Summary

- Mathematical Logic
- Proposition
 - Propositional variables
 - Logical connectives
 - Logical formulae
- Truth value
 - Truth table of logical connectives
 - Tautologies