FUNDAMENTALS OF LOGIC NO.3 NORMAL FORMS

Tatsuya Hagino hagino@sfc.keio.ac.jp

lecture URL

https://vu5.sfc.keio.ac.jp/slide/

So Far

- What is Logic?
 - mathematical logic
 - symbolic logic

Proposition

- A statement of which truth does not change.
- propositional variables
- logical connectives: ∧, ∨, →, ¬
- logical formula

Truth table

- truth value of logical connectives
- tautology = always true

Sub Formula

 The truth value of A can be calculated from truth values of sub formulae of A.

- Definition: Sub Formulae
 - 1. A itself is a sub formulae of A.
 - 2. If A is $(B \land C)$, $(B \lor C)$ or $(B \to C)$, sub formulae of B and C are sub formulae of A.
 - 3. If A is $(\neg B)$, sub formulae of B are sub formulae of A.
- Example
 - List of the sub formulae of $(p \rightarrow \neg q) \lor (q \land r)$.

Assignment

- An assignment is a map from the set of propositional variables V to the set of truth value $\{T, F\}$.
 - It assigns true or false to all the propositional variables.
 - Example: When $V = \{p, q\}$, if v(p) = T and v(q) = F, v is an assignment.
- An assignment v can be uniquely extended to a map from the set of logical formulae Φ to $\{T,F\}$.

```
1. v(A \land B) = T \Leftrightarrow v(A) = v(B) = T
```

2.
$$v(A \lor B) = T \Leftrightarrow v(A) = T \text{ or } v(B) = T$$

3.
$$v(A \rightarrow B) = T \Leftrightarrow v(A) = F \text{ or } v(B) = T$$

4.
$$v(\neg A) = T \Leftrightarrow v(A) = F$$

- Here, `⇔' is a meta symbol expressing necessary and sufficient condition.
- A logical formula A is a tautology.
 - \Leftrightarrow For any assignment v, v(A) = T.

Necessary and Sufficient Condition

- When $A \rightarrow B$ holds;
 - A is a sufficient condition for B.
 - B is a necessary condition for A.

Example:

- $x = 2 \rightarrow x^2 = 4$
 - x = 2 is sufficient for $x^2 = 4$ to hold.
 - $x^2 = 4$ is not sufficient for x = 2 to hold. It is just a necessary condition.
- When `If Taro likes Hanako, Hanako likes Taro' holds:
 - `Taro likes Hanako' is sufficient for 'Hanako liked Taro', but
 - 'Hanako likes Taro' is just necessary for `Taro likes Hanako'.

Satisfiability

- Dual concept of tautology
 - A formula A is satisfiable if there is an assignment v and v(A) = T.
 - If a formula is not satisfiable, it is unsatisfiable.

Theorem:

• A necessary and sufficient condition of a formula A being unsatisfiable is $\neg A$ is a tautology.

Exercise:

• Find all the combinaron of p, q, r assignment to make the value $((p \lor q) \to r) \lor (p \land q)$

false.

p	q	r	$p \lor q$	$(p \lor q) \rightarrow r$	$p \wedge q$	$((p \lor q) \rightarrow r) \lor (p \land q)$
						F

Equivalent Formula

- $(A \to B) \land (B \to A)$ will be abbreviated to $A \equiv B$.
 - A and B are equivalent.
 - $v(A \equiv B) = T \Leftrightarrow v(A) = v(B)$
- Theorem: The following formulae are tautologies:

•
$$A \wedge A \equiv A$$

• $A \vee A \equiv A$

Idempotent Law

•
$$A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C$$

• $A \lor (B \lor C) \equiv (A \lor B) \lor C$

Associative Law

•
$$A \wedge B \equiv B \wedge A$$

• $A \lor B \equiv B \lor A$

Commutative Law

•
$$A \wedge (A \vee B) \equiv A$$

• $A \vee (A \wedge B) \equiv A$

Absorption Law

•
$$A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$$

• $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$

Distribution Law

•
$$\neg \neg A \equiv A$$

•
$$\neg (A \lor B) \equiv \neg A \land \neg B$$

•
$$\neg (A \land B) \equiv \neg A \lor \neg B$$

Law of De Morgan

•
$$A \rightarrow B \equiv \neg A \lor B$$

Examples

Idempotent

- $A \wedge A \equiv A$
- p = `Taro likes Hanako'
- $p \wedge p \equiv p$

Contraposition

- $A \rightarrow B \equiv \neg B \rightarrow \neg A$
- $\neg B \rightarrow \neg A$ is the contraposition of $A \rightarrow B$.
- What is the contraposition of `If you are scolded by your teacher, you study hard'?

Double Negation

- $\neg \neg A \equiv A$

Propositional Constant

- For convenience, we have two propositional constants representing true and false.

 - For any assignment v, $v(\top) = T$ and $v(\bot) = F$.
- Tautologies:
 - $A \land \neg A \equiv \bot$
 - $A \vee \neg A \equiv \top$
 - $A \lor \bot \equiv A$
 - A ∨ T ≡ T
 - $A \wedge T \equiv A$
 - $A \land \bot \equiv \bot$
 - ¬T ≡ ⊥
 - ¬⊥ ≡ T
 - $\neg A \equiv A \rightarrow \perp$
 - $A \equiv T \rightarrow A$

Logical Equivalence

- If $A \equiv B$ is a tautology, A and B are logically equivalent.
- $A \sim B$ is used when A and B are logically equivalent.
 - `~' is not a logical symbol in the logic, but is a meta symbol which represents `logically equivalent'.
- Theorem: The followings hold for logical equivalence:
 - 1. $A \sim A$
 - 2. If $A \sim B$, then $B \sim A$.
 - 3. If $A \sim B$ and $B \sim C$, then $A \sim C$.
 - 4. If $A \sim B$, then $C[A/p] \sim C[B/p]$ where C[A/p] stand for replacing all the occurrence of logical variables p inside C with a formula A.
- This means that logically equivalent formulae can be replaced each other without changing the meaning.

Extending Disjunction and Conjunction

- For n formulae A_1, \ldots, A_n ,
 - $\bigvee_{i=1}^{n} A_i$ represents $(\cdots ((A_1 \vee A_2) \vee A_3) \vee \cdots \vee A_n)$, and
 - $\bigwedge_{i=1}^n A_i$ represents $(\cdots ((A_1 \land A_2) \land A_3) \land \cdots \land A_n)$.
- Under the logical equivalence, parentheses may be omitted.
 - $\bigvee_{i=1}^{n} A_i \sim A_1 \vee A_2 \vee A_3 \vee \cdots \vee A_n$
 - $\bigwedge_{i=1}^{n} A_i \sim A_1 \wedge A_2 \wedge A_3 \wedge \cdots \wedge A_n$

Normal Form

Literal

- A propositional variable or a propositional variable with ¬ is called literal.
- Example: p and $\neg q$ are literals, but $\neg \neg r$ is not.

Disjunctive Normal Form

- For any formula, there is an equivalent logical formula of the form $\bigvee_{i=1}^{m} \bigwedge_{j=1}^{n_i} A_{i,j}$ where $A_{i,j}$ are literals.
- $\bullet \ \ (A_{1,1} \wedge A_{1,2} \wedge \cdots \wedge A_{1,n_1}) \vee (A_{2,1} \wedge A_{2,2} \wedge \cdots \wedge A_{2,n_2}) \vee \cdots \vee (A_{m,1} \wedge A_{m,2} \wedge \cdots \wedge A_{m,n_m})$

Conjunctive Normal Form

- For any formula, there is an equivalent logical formula of the form $\bigwedge_{i=1}^{m}\bigvee_{j=1}^{n_i}A_{i,j}$ where $A_{i,j}$ are literals.
- $\bullet \ \ (A_{1,1} \vee A_{1,2} \vee \cdots \vee A_{1,n_1}) \wedge (A_{2,1} \vee A_{2,2} \vee \cdots \vee A_{2,n_2}) \wedge \cdots \wedge (A_{m,1} \vee A_{m,2} \vee \cdots \vee A_{m,n_m})$

Converting to Disjunctive Normal Form

- How to convert a give logical formula to a disjunctive normal form:
 - 1. Using $A \rightarrow B \sim \neg A \vee B$, remove ` \rightarrow '.
 - 2. Using $\neg (A \lor B) \sim \neg A \land \neg B$ and $\neg (A \land B) \sim \neg A \lor \neg B$, move $\neg \neg'$ inward until placed in front of propositional variables.
 - 3. Using $\neg \neg A \sim A$, replace more than two $\neg \neg'$ with only one or none.
 - 4. Using $A \wedge (B \vee C) \sim (A \wedge B) \vee (A \wedge C)$, move ` \wedge ' inside ` \vee '.
- Examples:
 - $(p \rightarrow q) \rightarrow r$
 - 1.
 - 2.
 - 3.
 - 4.
 - $\neg (p \rightarrow q \land r)$
 - 1.
 - 2.
 - 3.
 - 4.

How to write a formula in the system

Please write logical connectives in English

Name	Symbol	English	
conjunction	٨	and	
disjunction	V	or	
conditional	→ implies		
negation	Γ	not	
true	Т	top	
false	1	bottom	

$$(p \to q) \to r$$

(p implies q) implies r $\neg (p \rightarrow q \land r)$

Exercises:

• Find a disjunctive normal form of $((p \rightarrow q) \rightarrow p) \rightarrow p$.

• Find a disjunctive normal form of $(p \to p \land \neg q) \land (q \to q \land \neg p)$.

Exercise

• Find a conjunctive normal form of $((p \rightarrow q) \rightarrow p) \rightarrow p$.

• Find a conjunctive normal form of $\neg (p \rightarrow q) \land ((q \rightarrow s) \rightarrow r)$.

Conversion Using Truth Table

- A disjunctive normal form $\bigvee_{i=1}^{m} \bigwedge_{j=1}^{n_i} A_{i,j}$ expressing the condition when the formula becomes true.
- Using the truth table of $\neg(p \rightarrow q \land r)$, find an equivalent disjunctive normal form.

p	q	r	$q \wedge r$	$p \rightarrow q \wedge r$	$\neg (p \rightarrow q \land r)$
T	T	T			
T	T	F			
T	F	T			
T	F	F			
\overline{F}	T	T			
\overline{F}	T	F			
\overline{F}	F	T			
\overline{F}	F	F			

• Picking up the lines with T, a disjunctive normal form of $\neg(p \rightarrow q \land r)$ is:

Restricting Logical Connectives

A formula may use four kinds of logical connectives:

$$\bullet$$
 \wedge , \vee , \rightarrow , \neg

• Using $A \rightarrow B \sim \neg A \vee B$, \rightarrow is not necessary.

• Using $A \wedge B \sim \neg(\neg A \vee \neg B)$, ` \wedge ' can be expressed by ` \neg ' and ` \vee '.

```
• V . ¬
```

• Using $A \vee B \sim \neg(\neg A \wedge \neg B)$, `v' can be expressed by `¬' and ` \wedge '.

Summary

- Logical Formula
 - sub formula
 - assignment
 - equivalent logical formula
- Normal Form
 - Disjunctive Normal Form
 - Conjunctive Normal Form
- Restricting Logical Connectives