FUNDAMENTALS OF LOGIC NO. 3 NORMAL FORMS

Tatsuya Hagino
hagino@sfc.keio.ac.jp
lecture URL
https://vu5.sfc.keio.ac.jp/slide/

So Far

-What is Logic?

- mathematical logic
- symbolic logic
- Proposition
- A statement of which truth does not change.
- propositional variables
- logical connectives: $\wedge, \vee, \rightarrow, \neg$
- logical formula
- Truth table
- truth value of logical connectives
- tautology = always true

Sub Formula

- The truth value of A can be calculated from truth values of sub formulae of A.
- Definition: Sub Formulae

1. A itself is a sub formulae of A.
2. If A is $(B \wedge C),(B \vee C)$ or $(B \rightarrow C)$, sub formulae of B and C are sub formulae of A.
3. If A is $(\neg B)$, sub formulae of B are sub formulae of A.

- Example
- List of the sub formulae of $(p \rightarrow \neg q) \vee(q \wedge r)$.

Assignment

- An assignment is a map from the set of propositional variables V to the set of truth value $\{T, F\}$.
- It assigns true or false to all the propositional variables.
- Example: When $V=\{p, q\}$, if $v(p)=T$ and $v(q)=F, v$ is an assignment.
- An assignment v can be uniquely extended to a map from the set of logical formulae Φ to $\{T, F\}$.

$$
\begin{aligned}
& \text { 1. } v(A \wedge B)=T \Leftrightarrow v(A)=v(B)=T \\
& \text { 2. } v(A \vee B)=T \Leftrightarrow v(A)=T \text { or } v(B)=T \\
& \text { 3. } v(A \rightarrow B)=T \Leftrightarrow v(A)=F \text { or } v(B)=T \\
& \text { 4. } v(\neg A)=T \Leftrightarrow v(A)=F
\end{aligned}
$$

- Here, ` \Leftrightarrow ' is a meta symbol expressing necessary and sufficient condition.
- A logical formula A is a tautology.
\Leftrightarrow For any assignment $v, v(A)=T$.

Necessary and Sufficient Condition

- When $A \rightarrow B$ holds;
- A is a sufficient condition for B.
- B is a necessary condition for A.
- Example:
- $x=2 \rightarrow x^{2}=4$
- $x=2$ is sufficient for $x^{2}=4$ to hold.
- $x^{2}=4$ is not sufficient for $x=2$ to hold. It is just a necessary condition.
- When `If Taro likes Hanako, Hanako likes Taro' holds:
- 'Taro likes Hanako' is sufficient for 'Hanako liked Taro', but
- 'Hanako likes Taro' is just necessary for `Taro likes Hanako'.

Satisfiability

- Dual concept of tautology
- A formula A is satisfiable if there is an assignment v and $v(A)=T$.
- If a formula is not satisfiable, it is unsatisfiable.
- Theorem:
- A necessary and sufficient condition of a formula A being unsatisfiable is $\neg A$ is a tautology.

- Exercise:

- Find all the combinaron of p, q, r assignment to make the value

$$
((p \vee q) \rightarrow r) \vee(p \wedge q)
$$

false.

p	q	r	$p \vee q$	$(p \vee q) \rightarrow r$	$p \wedge q$	$((p \vee q) \rightarrow r) \vee(p \wedge q)$
						F

Equivalent Formula

- $(A \rightarrow B) \wedge(B \rightarrow A)$ will be abbreviated to $A \equiv B$.
- A and B are equivalent.
- $v(A \equiv B)=T \Leftrightarrow v(A)=v(B)$
- Theorem: The following formulae are tautologies:

$\begin{aligned} \cdot A \wedge A & \equiv A \\ \cdot A \vee A & \equiv A \end{aligned}$	Idempotent Law
$\begin{aligned} -A \wedge(B \wedge C) & \equiv(A \wedge B) \wedge C \\ -A \vee(B \vee C) & \equiv(A \vee B) \vee C \end{aligned}$	Associative Law
$\begin{aligned} A \wedge B & \equiv B \wedge A \\ \cdot A \vee B & \equiv B \vee A \end{aligned}$	Commutative Law
$\begin{aligned} \cdot A \wedge(A \vee B) & \equiv A \\ \cdot A \vee(A \wedge B) & \equiv A \end{aligned}$	Absorption Law
$\begin{aligned} \cdot A \wedge(B \vee C) & \equiv(A \wedge B) \vee(A \wedge C) \\ \cdot A \vee(B \wedge C) & \equiv(A \vee B) \wedge(A \vee C) \end{aligned}$	Distribution Law

- $\neg \neg A \equiv A$

$\neg(A \vee B)$	$\equiv \neg A \wedge \neg B$
$\therefore \neg(A \wedge B)$	$\equiv \neg A \vee \neg B$

Examples

- Idempotent
- $A \wedge A \equiv A$
- $\mathrm{p}=$ `Taro likes Hanako'
- $p \wedge p \equiv p$
- Contraposition
- $A \rightarrow B \equiv \neg B \rightarrow \neg A$
- $\neg B \rightarrow \neg A$ is the contraposition of $A \rightarrow B$.
- What is the contraposition of 'If you are scolded by your teacher, you study hard'?
- Double Negation
- $\neg \neg A \equiv A$
- `I don't know nothing.' ミ ` I know something.'?
- `I don't dislike you.' ミ` I like you.'?

Propositional Constant

- For convenience, we have two propositional constants representing true and false.
- T and \perp are formulae.
- For any assignment $v, v(T)=T$ and $v(\perp)=F$.
- Tautologies:
- $A \wedge \neg A \equiv \perp$
- $A \vee \neg A \equiv \top$
- $A \vee \perp \equiv A$
- $A \vee \mathrm{~T} \equiv \mathrm{~T}$
- $A \wedge \top \equiv A$
- $A \wedge \perp \equiv \perp$
- $\neg 丁 \equiv \perp$
- $\neg \perp \equiv \mathrm{T}$
- $\neg A \equiv A \rightarrow \perp$
- $A \equiv \mathrm{~T} \rightarrow A$

Logical Equivalence

- If $A \equiv B$ is a tautology, A and B are logically equivalent.
- $A \sim B$ is used when A and B are logically equivalent.
- `\(\sim\) ' is not a logical symbol in the logic, but is a meta symbol which represents`logically equivalent'.
- Theorem: The followings hold for logical equivalence:

1. $A \sim A$
2. If $A \sim B$, then $B \sim A$.
3. If $A \sim B$ and $B \sim C$, then $A \sim C$.
4. If $A \sim B$, then $C[A / p] \sim C[B / p]$
where $C[A / p]$ stand for replacing all the occurrence of logical variables p inside C with a formula A.

- This means that logically equivalent formulae can be replaced each other without changing the meaning.

Extending Disjunction and Conjunction

- For n formulae A_{1}, \ldots, A_{n},
- $\vee_{i=1}^{n} A_{i}$ represents $\left(\cdots\left(\left(A_{1} \vee A_{2}\right) \vee A_{3}\right) \vee \cdots \vee A_{n}\right)$, and
- $\wedge_{i=1}^{n} A_{i}$ represents $\left(\cdots\left(\left(A_{1} \wedge A_{2}\right) \wedge A_{3}\right) \wedge \cdots \wedge A_{n}\right)$.
- Under the logical equivalence, parentheses may be omitted.
- $\bigvee_{i=1}^{n} A_{i} \sim A_{1} \vee A_{2} \vee A_{3} \vee \cdots \vee A_{n}$
- $\wedge_{i=1}^{n} A_{i} \sim A_{1} \wedge A_{2} \wedge A_{3} \wedge \cdots \wedge A_{n}$

Normal Form

- Literal
- A propositional variable or a propositional variable with \neg is called literal.
- Example: p and $\neg q$ are literals, but $\neg \neg r$ is not.
- Disjunctive Normal Form
- For any formula, there is an equivalent logical formula of the form $\vee_{i=1}^{m} \Lambda_{j=1}^{n_{i}} A_{i, j}$ where $A_{i, j}$ are literals.
- $\left(A_{1,1} \wedge A_{1,2} \wedge \cdots \wedge A_{1, n_{1}}\right) \vee\left(A_{2,1} \wedge A_{2,2} \wedge \cdots \wedge A_{2, n_{2}}\right) \vee \cdots \vee\left(A_{m, 1} \wedge A_{m, 2} \wedge \cdots \wedge A_{m, n_{m}}\right)$
- Conjunctive Normal Form
- For any formula, there is an equivalent logical formula of the form $\Lambda_{i=1}^{m} \vee_{j=1}^{n_{i}} A_{i, j}$ where $A_{i, j}$ are literals.
- $\left(A_{1,1} \vee A_{1,2} \vee \cdots \vee A_{1, n_{1}}\right) \wedge\left(A_{2,1} \vee A_{2,2} \vee \cdots \vee A_{2, n_{2}}\right) \wedge \cdots \wedge\left(A_{m, 1} \vee A_{m, 2} \vee \cdots \vee A_{m, n_{m}}\right)$

Converting to Disjunctive Normal Form

- How to convert a give logical formula to a disjunctive normal form:

1. Using $A \rightarrow B \sim \neg A \vee B$, remove ${ }^{`} \rightarrow$ '.
2. Using $\neg(A \vee B) \sim \neg A \wedge \neg B$ and $\neg(A \wedge B) \sim \neg A \vee \neg B$, move ` \neg ' inward until placed in front of propositional variables.
3. Using $\neg \neg A \sim A$, replace more than two ` \neg ' with only one or none.
4. Using $A \wedge(B \vee C) \sim(A \wedge B) \vee(A \wedge C)$, move ` \wedge ' inside ' \vee '.

- Examples:
- $(p \rightarrow q) \rightarrow r$

1.
2.
3.
4.

- $\neg(\mathrm{p} \rightarrow q \wedge r)$

1.
2.
3.
4.

How to write a formula in the system

- Please write logical connectives in English

Name	Symbol	English
conjunction	\wedge	and
disjunction	\vee	or
conditional	\rightarrow	implies
negation	\neg	not
true	T	top
false	\perp	bottom

$(p \rightarrow q) \rightarrow r \square(p$ implies $q)$ implies $r \quad \neg(p \rightarrow q \wedge r) \square$ not (p implies q or $r)$

Exercises:

- Find a disjunctive normal form of $((p \rightarrow q) \rightarrow p) \rightarrow p$.
- Find a disjunctive normal form of $(p \rightarrow p \wedge \neg q) \wedge(q \rightarrow q \wedge \neg p)$.

Exercise

- Find a conjunctive normal form of $((p \rightarrow q) \rightarrow p) \rightarrow p$.
- Find a conjunctive normal form of $\neg(p \rightarrow q) \wedge((q \rightarrow s) \rightarrow r)$.

Conversion Using Truth Table

- A disjunctive normal form $\bigvee_{i=1}^{m} \wedge_{j=1}^{n_{i}} A_{i, j}$ expressing the condition when the formula becomes true.
- Using the truth table of $\neg(p \rightarrow q \wedge r)$, find an equivalent disjunctive normal form.

p	q	r	$q \wedge r$	$p \rightarrow q \wedge r$	$\neg(p \rightarrow q \wedge r)$
T	T	T			
T	T	F			
T	F	T			
T	F	F			
F	T	T			
F	T	F			
F	F	T			
F	F	F			

- Picking up the lines with T, a disjunctive normal form of $\neg(p \rightarrow q \wedge r)$ is:

Restricting Logical Connectives

- A formula may use four kinds of logical connectives:
- ^, V, \rightarrow, ᄀ
- Using $A \rightarrow B \sim \neg A \vee B, ~ ' \rightarrow$ is not necessary.
- ^, \vee, ᄀ
- Using $A \wedge B \sim \neg(\neg A \vee \neg B)$, `\(\wedge\) ' can be expressed by`$\neg '$ and ' v '.
- v, \neg
- Using $A \vee B \sim \neg(\neg A \wedge \neg B)$, `\(\vee\) ' can be expressed by` $\neg '$ and ' \wedge '.
- ^, ᄀ

Summary

- Logical Formula
- sub formula
- assignment
- equivalent logical formula
- Normal Form
- Disjunctive Normal Form
- Conjunctive Normal Form
- Restricting Logical Connectives

