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So Far
• Proposition

• Sentences of which truth does not change.
• Propositional variables
• Logical connectives （∧，∨，→，￢）

• Logical formula
• Truth table
• Tautology

• Normal form
• Disjunctive normal form
• Conjunctive normal form
• Restricting logical connectives
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Inference (Deduction)
• Using truth table to show the correctness of propositions

• Calculate the truth value from the truth value of propositional variables.

• Inference
• Infer new correct proposition from correct propositions already known
• Apply inference rules to propositions
• `Infer 𝐴𝐴 from premises 𝐵𝐵1, … ,𝐵𝐵𝑛𝑛 '

• Inference rule
• Rule to infer correct proposition from correct premise propositions

• Example:
• From 𝐴𝐴 and 𝐴𝐴 → 𝐵𝐵, infer 𝐵𝐵.
• modus ponens or syllogism
• `All men are mortal' and `Socrates is a man', therefore `Socrates is 

mortal'.
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Axiom and Theorem
• Axiom

• Premises which we believe correct.
• `There is only one straight line which goes through two different points.'
• `Parallel straight lines never meet.'

• Theorem
• Propositions which are inferred from axioms using inference rules
• Proof is the inference steps of theorem

• `The sum of internal angles of any triangle is 180 degrees.'
• `Pythagorean theorem'
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Formal Logical Framework
• Framework for handling logic formally

• Framework for handling logical formulae
• Consist of axioms and inference rules

• Frameworks for Classical Propositional Logic:
• Hilbert framework (Hilbert style)

• Axiomatic framework
• Only one inference rule: modus ponens

• Natural Deduction by Gentzen
• NK framework (NK system)
• Close to ordinary (human) inference

• Sequent Calculus by Gentzen
• LK framework (LK system)
• Easy to formalize
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LK Sequent

• Intuitive meaning
• If 𝐴𝐴1 to 𝐴𝐴𝑚𝑚 are true, at least one of 𝐵𝐵1 to 𝐵𝐵𝑛𝑛 is also true.

• ` ⊦ ' is called:
• turnstyle
• tee

• 𝐴𝐴1, . . . ,𝐴𝐴𝑚𝑚 ⊦ 𝐵𝐵1, . . . ,𝐵𝐵𝑛𝑛
• 𝐴𝐴1, . . . ,𝐴𝐴𝑚𝑚 antecedent (assumption)
• 𝐵𝐵1, . . . ,𝐵𝐵𝑛𝑛 succedent (consequence)
• `The succedent is inferred from  the antecedent.'
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• LK system uses sequent :

𝐴𝐴1, . . . ,𝐴𝐴𝑚𝑚 ⊦ 𝐵𝐵1, . . . ,𝐵𝐵𝑛𝑛

𝐴𝐴1, . . . ,𝐴𝐴𝑚𝑚 ⊦ 𝐵𝐵1, . . . ,𝐵𝐵𝑛𝑛
antecedent succedent

turnstile



Special Cases for Sequent

• 𝑚𝑚 or 𝑛𝑛 can be 0
• ⊦ 𝐵𝐵1, . . . ,𝐵𝐵𝑛𝑛

• At least one of 𝐵𝐵1 to 𝐵𝐵𝑛𝑛 is true.
• ⊦ 𝐵𝐵

• 𝐵𝐵 is true.
• 𝐴𝐴1, . . . ,𝐴𝐴𝑚𝑚 ⊦

• If 𝐴𝐴1 to 𝐴𝐴𝑚𝑚 are true, contradicts.
• At least one of 𝐴𝐴1 to 𝐴𝐴𝑚𝑚 is not true. 

• 𝐴𝐴 ⊦
• 𝐴𝐴 is not true.

• ⊦
• Contradiction

7

𝐴𝐴1, . . . ,𝐴𝐴𝑚𝑚 ⊦ 𝐵𝐵1, . . . ,𝐵𝐵𝑛𝑛



An Example of LK Inference Rules

• Given the premise sequent, infer the conclusion sequent.
• 𝐴𝐴 is a logical formula
• Γ and Δ are sequence of logical formulae.

• Γ or Δ or both may be empty.

• Examples:
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𝐴𝐴, Γ ⊦ Δ
（CL）

𝐴𝐴,𝐴𝐴, Γ ⊦ Δ name of the rule

conclusion sequent

premise sequent

𝐴𝐴,𝐵𝐵,𝐶𝐶 ⊦ 𝐷𝐷
（CL）

𝐴𝐴,𝐴𝐴,𝐵𝐵,𝐶𝐶 ⊦ 𝐷𝐷
𝐴𝐴 ⊦ 𝐴𝐴 ∧ 𝐵𝐵

（CL）
𝐴𝐴,𝐴𝐴 ⊦ 𝐴𝐴 ∧ 𝐵𝐵

𝐴𝐴 ∨ 𝐵𝐵 ⊦ 𝐴𝐴 ∧ 𝐵𝐵
（CL）

𝐴𝐴 ∨ 𝐵𝐵,𝐴𝐴 ∨ 𝐵𝐵 ⊦ 𝐴𝐴 ∧ 𝐵𝐵

𝑝𝑝 → 𝑞𝑞 ∨ 𝑟𝑟,𝑝𝑝 → 𝑞𝑞 ⊦ 𝑠𝑠 → 𝑡𝑡
（CL）

𝑝𝑝 → 𝑞𝑞 ∨ 𝑟𝑟, 𝑝𝑝 → 𝑞𝑞 ∨ 𝑟𝑟,𝑝𝑝 ∧ 𝑠𝑠 ⊦ 𝑠𝑠 → 𝑡𝑡



LK Axiom and Inference Rules
• Axiom: Initial Sequent and Constants
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𝐴𝐴 ⊦ 𝐴𝐴
（I）

• Inference rules for structure: weakening, contraction, exchange, cut

𝐴𝐴, Γ ⊦ Δ
（WL）

Γ ⊦ Δ

𝐴𝐴, Γ ⊦ Δ
（CL）

𝐴𝐴,𝐴𝐴, Γ ⊦ Δ

Γ1,𝐵𝐵,𝐴𝐴, Γ2 ⊦ Δ
（EL）

Γ1,𝐴𝐴,𝐵𝐵, Γ2 ⊦ Δ

Γ ⊦ Δ,𝐴𝐴
（WR）

Γ ⊦ Δ

Γ ⊦ Δ,𝐴𝐴
（CR）

Γ ⊦ Δ,𝐴𝐴,𝐴𝐴

Γ ⊦ Δ1,𝐵𝐵,𝐴𝐴,Δ2
（ER）

Γ ⊦ Δ1,𝐴𝐴,𝐵𝐵,Δ2

Γ1,Γ2 ⊦ Δ1,Δ2
（Cut）

Γ1 ⊦ Δ1,𝐴𝐴 𝐴𝐴, Γ2 ⊦ Δ2

（where Γ,Δ are sequence of logical formulae）

⊦ ⊤
（ ⊤ ）

⊥ ⊦
（ ⊥ ）



Inference rules (cont.)
• Inference rules for logical connectives:
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𝐴𝐴 ∧ 𝐵𝐵, Γ ⊦ Δ
（∧L1）

𝐴𝐴, Γ ⊦ Δ

𝐴𝐴 ∧ 𝐵𝐵, Γ ⊦ Δ
（∧L2）

𝐵𝐵, Γ ⊦ Δ

Γ1, Γ2 ⊦ Δ1,Δ2,𝐴𝐴 ∧ 𝐵𝐵
（∧R）

Γ1 ⊦ Δ1,𝐴𝐴 Γ2 ⊦ Δ2,𝐵𝐵

Γ ⊦ Δ,𝐴𝐴 ∨ 𝐵𝐵
（∨R1）

Γ ⊦ Δ,𝐴𝐴

Γ ⊦ Δ,𝐴𝐴 ∨ 𝐵𝐵
（∨R2）

Γ ⊦ Δ,𝐵𝐵

𝐴𝐴 ∨ 𝐵𝐵, Γ1, Γ2 ⊦ Δ1,Δ2
（∨L）

𝐴𝐴, Γ1 ⊦ Δ1 𝐵𝐵, Γ2 ⊦ Δ2

𝐴𝐴 → 𝐵𝐵, Γ1,Γ2 ⊦ Δ1,Δ2
（→L）

Γ1 ⊦ Δ1,𝐴𝐴 𝐵𝐵, Γ2 ⊦ Δ2
Γ ⊦ Δ,𝐴𝐴 → 𝐵𝐵

（→R）
𝐴𝐴, Γ ⊦ Δ,𝐵𝐵

¬𝐴𝐴, Γ ⊦ Δ
（￢L）

Γ ⊦ Δ,𝐴𝐴

Γ ⊦ Δ, ¬𝐴𝐴
（￢R）

𝐴𝐴, Γ ⊦ Δ



LK Axiom

• Meaning:
• 𝐴𝐴 can be inferred from 𝐴𝐴 .

• LK has only one axiom.
• Since 𝐴𝐴 can be any formula, there are infinitely many axioms.
• Find an appropriate formula for  𝐴𝐴 .

• Examples:
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𝐴𝐴 ⊦ 𝐴𝐴
（I）

𝑝𝑝 ⊦ 𝑝𝑝
（I）

𝑝𝑝 ∧ 𝑞𝑞 ⊦ 𝑝𝑝 ∧ 𝑞𝑞
（I）

𝑝𝑝 → 𝑞𝑞 ∨ 𝑟𝑟 ⊦ 𝑝𝑝 → 𝑞𝑞 ∨ 𝑟𝑟
（I）

𝐴𝐴 ∨ 𝐵𝐵 ⊦ 𝐴𝐴 ∨ 𝐵𝐵
（I）



Axioms for Constants

• Meaning:
• True can be inferred always.
• False cannot infer anything.
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⊦ ⊤
（ ⊤ ）

⊥ ⊦
（ ⊥ ）



Weakening, Contraction and Exchange

• weakening
• Any formula may be added to antecedent or succedent.
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𝐴𝐴, Γ ⊦ Δ
（WL）

Γ ⊦ Δ

𝐴𝐴, Γ ⊦ Δ
（CL）

𝐴𝐴,𝐴𝐴, Γ ⊦ Δ

Γ1,𝐵𝐵,𝐴𝐴, Γ2 ⊦ Δ
（EL）

Γ1,𝐴𝐴,𝐵𝐵, Γ2 ⊦ Δ

Γ ⊦ Δ,𝐴𝐴
（WR）

Γ ⊦ Δ

Γ ⊦ Δ,𝐴𝐴
（CR）

Γ ⊦ Δ,𝐴𝐴,𝐴𝐴

Γ ⊦ Δ1,𝐵𝐵,𝐴𝐴,Δ2
（ER）

Γ ⊦ Δ1,𝐴𝐴,𝐵𝐵,Δ2

• contraction
• The same formulae can be merged (or contracted).

• exchange
• The order of formulae in antecedent or succedent may be changed.



Cut
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Γ1 ⊦ Δ2
（Cut）

Γ1 ⊦ 𝐴𝐴 𝐴𝐴 ⊦ Δ2

• cut
• From a sequent having 𝐴𝐴 in succedent and a sequent having 𝐴𝐴 in 

antecedent, infer a sequent removing 𝐴𝐴 .
• When it is difficult to show Γ1 ⊦ Δ2 ,

• Show Γ1 ⊦ 𝐴𝐴 first, and
• Infer 𝐴𝐴 ⊦ Δ2 .

Γ1, Γ2 ⊦ Δ1,Δ2
（Cut）

Γ1 ⊦ Δ1,𝐴𝐴 𝐴𝐴, Γ2 ⊦ Δ2



Left and Right
• Conclusion sequent has a logical connective.
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𝐴𝐴 ∧ 𝐵𝐵, Γ ⊦ Δ
（∧L1）

𝐴𝐴, Γ ⊦ Δ

𝐴𝐴 ∧ 𝐵𝐵, Γ ⊦ Δ
（∧L2）

𝐵𝐵, Γ ⊦ Δ

Γ1, Γ2 ⊦ Δ1,Δ2,𝐴𝐴 ∧ 𝐵𝐵
（∧R）

Γ1 ⊦ Δ1,𝐴𝐴 Γ2 ⊦ Δ2,𝐵𝐵

Γ ⊦ Δ,𝐴𝐴 ∨ 𝐵𝐵
（∨R1）

Γ ⊦ Δ,𝐴𝐴

Γ ⊦ Δ,𝐴𝐴 ∨ 𝐵𝐵
（∨R2）

Γ ⊦ Δ,𝐵𝐵

𝐴𝐴 ∨ 𝐵𝐵, Γ1, Γ2 ⊦ Δ1,Δ2
（∨L）

𝐴𝐴, Γ1 ⊦ Δ1 𝐵𝐵, Γ2 ⊦ Δ2

𝐴𝐴 → 𝐵𝐵, Γ1, Γ2 ⊦ Δ1,Δ2
（→L）

Γ1 ⊦ Δ1,𝐴𝐴 𝐵𝐵, Γ2 ⊦ Δ2
Γ ⊦ Δ,𝐴𝐴 → 𝐵𝐵

（→R）
𝐴𝐴, Γ ⊦ Δ,𝐵𝐵

¬𝐴𝐴, Γ ⊦ Δ
（￢L）

Γ ⊦ Δ,𝐴𝐴
Γ ⊦ Δ, ¬𝐴𝐴

（￢R）
𝐴𝐴, Γ ⊦ Δ

left：antecedent has a logical connective right：consequent has a logical connective



Inference Rules for ∧

• Two left rules: ∧L1, ∧L2
• Add ∧ to the antecedent
• Make 𝐴𝐴 to 𝐴𝐴 ∧ 𝐵𝐵
• Make 𝐵𝐵 to 𝐴𝐴 ∧ 𝐵𝐵

• One right rule: ∧R
• Add ∧ to the succedent
• Combine 𝐴𝐴 and 𝐵𝐵, and make 𝐴𝐴 ∧ 𝐵𝐵
• From two premises, infer one conclusion.
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𝐴𝐴 ∧ 𝐵𝐵, Γ ⊦ Δ
（∧L1）

𝐴𝐴, Γ ⊦ Δ

𝐴𝐴 ∧ 𝐵𝐵, Γ ⊦ Δ
（∧L2）

𝐵𝐵, Γ ⊦ Δ Γ1, Γ2 ⊦ Δ1,Δ2,𝐴𝐴 ∧ 𝐵𝐵
（∧R）

Γ1 ⊦ Δ1,𝐴𝐴 Γ2 ⊦ Δ2,𝐵𝐵



Inference Rules for ∨

• One left rule: ∨L
• Add ∨ to the antecedent.
• Combine 𝐴𝐴 and 𝐵𝐵 , to make 𝐴𝐴 ∨ 𝐵𝐵
• From two premises, infer one conclusion.

• Two right rules: ∨R1, ∨R2
• Add ∨ to the succedent.
• Make 𝐴𝐴 to 𝐴𝐴 ∨ 𝐵𝐵
• Make 𝐵𝐵 to 𝐴𝐴 ∨ 𝐵𝐵
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Γ ⊦ Δ,𝐴𝐴 ∨ 𝐵𝐵
（∨R1）

Γ ⊦ Δ,𝐴𝐴

Γ ⊦ Δ,𝐴𝐴 ∨ 𝐵𝐵
（∨R2）

Γ ⊦ Δ,𝐵𝐵𝐴𝐴 ∨ 𝐵𝐵, Γ1, Γ2 ⊦ Δ1,Δ2
（∨L）

𝐴𝐴, Γ1 ⊦ Δ1 𝐵𝐵, Γ2 ⊦ Δ2



Inference Rules for →

• One left rule: →L
• Add → to the antecedent.
• Combine 𝐴𝐴 in the succedent and 𝐵𝐵 in the antecedent, make 𝐴𝐴 → 𝐵𝐵

in the antecedent.
• From two premises, infer one conclusion.

• One right rule: →R
• Add → to the succedent.
• Combine 𝐴𝐴 in the antecedent and 𝐵𝐵 in the succedent, make 𝐴𝐴 → 𝐵𝐵

in the succedent.
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𝐴𝐴 → 𝐵𝐵, Γ1,Γ2 ⊦ Δ1,Δ2
（→L）

Γ1 ⊦ Δ1,𝐴𝐴 𝐵𝐵, Γ2 ⊦ Δ2
Γ ⊦ Δ,𝐴𝐴 → 𝐵𝐵

（→R）
𝐴𝐴, Γ ⊦ Δ,𝐵𝐵



Inference Rules for ¬

• One left rule: ¬L
• Add ¬ to the antecedent.
• Move 𝐴𝐴 in the succedent to ¬𝐴𝐴 in the antecedent.

• One right rule: ¬R
• Add ¬ to the succedent.
• Move 𝐴𝐴 in the antecedent to ¬𝐴𝐴 in the succedent.

19

¬𝐴𝐴, Γ ⊦ Δ
（￢L）

Γ ⊦ Δ,𝐴𝐴

Γ ⊦ Δ, ¬𝐴𝐴
（￢R）

𝐴𝐴, Γ ⊦ Δ



LK Proof Figure
• LK Proof Figure:

• Start from initial sequent (or constants) and apply inference rules.
• The bottom sequent is called end sequent of the proof figure.

• Example: proof figure
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• When there is a proof figure of which end sequent is 𝑆𝑆, 𝑆𝑆 is provable in LK.

𝐴𝐴 ⊦ 𝐴𝐴
（I）

⊦ 𝐴𝐴, ¬𝐴𝐴
（￢R）

⊦ 𝐴𝐴,𝐴𝐴 ∨ ¬𝐴𝐴

⊦ 𝐴𝐴 ∨ ¬𝐴𝐴,𝐴𝐴

⊦ 𝐴𝐴 ∨ ¬𝐴𝐴,𝐴𝐴 ∨ ¬𝐴𝐴

⊦ 𝐴𝐴 ∨ ¬𝐴𝐴

（∨R2）

（ER）

（∨R1）

（CR）

end sequent

initial sequent



Exercise
• Show proof figures of the following propositions:

• 𝐴𝐴 → ¬¬𝐴𝐴
• ¬¬𝐴𝐴 → 𝐴𝐴
• 𝐴𝐴 ∧ 𝐵𝐵 → 𝐵𝐵 ∧ 𝐴𝐴
• 𝐴𝐴 ∨ 𝐵𝐵 → 𝐵𝐵 ∨ 𝐴𝐴
• ￢ 𝐴𝐴 ∧￢𝐵𝐵 → 𝐴𝐴 → 𝐵𝐵
• 𝐴𝐴 → 𝐵𝐵 →￢ 𝐴𝐴 ∧￢𝐵𝐵

21



Summary
• Inference

• Axiom
• Theorem

• LK System
• Sequent calculus
• Initial sequent
• LK inference rules

• Proof
• Proof figure
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