

FUNDAMENTALS OF LOGIC

NO.4 PROOF

Tatsuya Hagino

hagino@sfc.keio.ac.jp

lecture URL

<https://vu5.sfc.keio.ac.jp/slide/>

So Far

- Proposition
 - Sentences of which truth does not change.
 - Propositional variables
 - Logical connectives (\wedge , \vee , \rightarrow , \neg)
 - Logical formula
 - Truth table
 - Tautology
- Normal form
 - Disjunctive normal form
 - Conjunctive normal form
 - Restricting logical connectives

Inference (Deduction)

- Using truth table to show the correctness of propositions
 - Calculate the truth value from the truth value of propositional variables.
- *Inference*
 - Infer new correct proposition from correct propositions already known
 - Apply inference rules to propositions
 - 'Infer A from premises B_1, \dots, B_n '
- *Inference rule*
 - Rule to infer correct proposition from correct premise propositions
- Example:
 - From A and $A \rightarrow B$, infer B .
 - *modus ponens* or *syllogism*
 - 'All men are mortal' and 'Socrates is a man', therefore 'Socrates is mortal'.

Axiom and Theorem

- *Axiom*
 - Premises which we believe correct.
 - 'There is only one straight line which goes through two different points.'
 - 'Parallel straight lines never meet.'
- *Theorem*
 - Propositions which are inferred from axioms using inference rules
 - *Proof* is the inference steps of theorem
 - 'The sum of internal angles of any triangle is 180 degrees.'
 - 'Pythagorean theorem'

Formal Logical Framework

- Framework for handling logic formally
 - Framework for handling logical formulae
 - Consist of axioms and inference rules
- Frameworks for *Classical Propositional Logic*:
 - Hilbert framework (Hilbert style)
 - Axiomatic framework
 - Only one inference rule: modus ponens
 - Natural Deduction by Gentzen
 - NK framework (NK system)
 - Close to ordinary (human) inference
 - Sequent Calculus by Gentzen
 - LK framework (LK system)
 - Easy to formalize

LK Sequent

- LK system uses *sequent* :

$$A_1, \dots, A_m \vdash B_1, \dots, B_n$$

- Intuitive meaning

- If A_1 to A_m are true, at least one of B_1 to B_n is also true.

- ' \vdash ' is called:

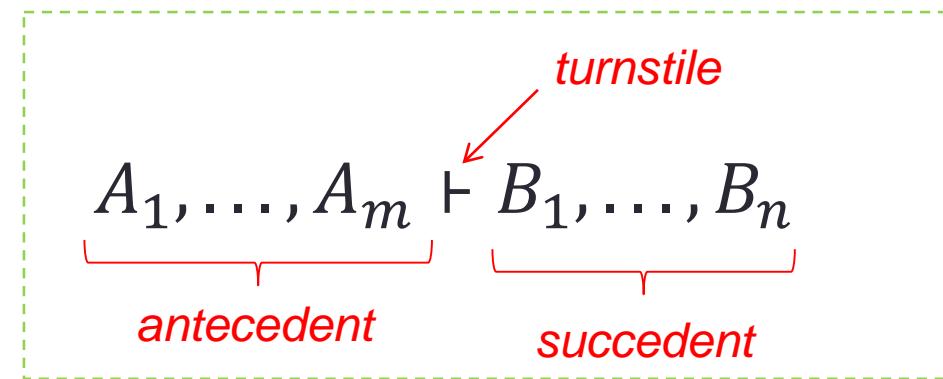
- turnstyle
- tee

- $A_1, \dots, A_m \vdash B_1, \dots, B_n$

- A_1, \dots, A_m **antecedent (assumption)**

- B_1, \dots, B_n **succedent (consequence)**

- 'The succedent is inferred from the antecedent.'



Special Cases for Sequent

$$A_1, \dots, A_m \vdash B_1, \dots, B_n$$

- m or n can be 0
 - $\vdash B_1, \dots, B_n$
 - At least one of B_1 to B_n is true.
 - $\vdash B$
 - B is true.
 - $A_1, \dots, A_m \vdash$
 - If A_1 to A_m are true, contradicts.
 - At least one of A_1 to A_m is not true.
 - $A \vdash$
 - A is not true.
 - \vdash
 - Contradiction

An Example of LK Inference Rules

$$\frac{A, A, \Gamma \vdash \Delta}{A, \Gamma \vdash \Delta} \text{ (CL)}$$

A, A, $\Gamma \vdash \Delta$ premise sequent
 (CL) name of the rule
 A, $\Gamma \vdash \Delta$ conclusion sequent

- Given the **premise** sequent, infer the **conclusion** sequent.
 - A is a logical formula
 - Γ and Δ are sequence of logical formulae.
 - Γ or Δ or both may be empty.
- Examples:

$$\frac{A, A, B, C \vdash D}{A, B, C \vdash D} \text{ (CL)}$$

$$\frac{A, A \vdash A \wedge B}{A \vdash A \wedge B} \text{ (CL)}$$

$$\frac{A \vee B, A \vee B \vdash A \wedge B}{A \vee B \vdash A \wedge B} \text{ (CL)}$$

$$\frac{p \rightarrow q \vee r, p \rightarrow q \vee r, p \wedge s \vdash s \rightarrow t}{p \rightarrow q \vee r, p \rightarrow q \vdash s \rightarrow t} \text{ (CL)}$$

LK Axiom and Inference Rules

- Axiom: *Initial Sequent* and *Constants*

$$\frac{}{A \vdash A} \text{ (I)}$$

$$\frac{}{\vdash \top} \text{ (T)}$$

$$\frac{}{\perp \vdash} \text{ (⊥)}$$

- Inference rules for structure: **weakening**, **contraction**, **exchange**, **cut**

$$\frac{\Gamma \vdash \Delta}{A, \Gamma \vdash \Delta} \text{ (WL)}$$

$$\frac{\Gamma \vdash \Delta}{\Gamma \vdash \Delta, A} \text{ (WR)}$$

$$\frac{A, A, \Gamma \vdash \Delta}{A, \Gamma \vdash \Delta} \text{ (CL)}$$

$$\frac{\Gamma \vdash \Delta, A, A}{\Gamma \vdash \Delta, A} \text{ (CR)}$$

$$\frac{\Gamma_1, A, B, \Gamma_2 \vdash \Delta}{\Gamma_1, B, A, \Gamma_2 \vdash \Delta} \text{ (EL)}$$

$$\frac{\Gamma \vdash \Delta_1, A, B, \Delta_2}{\Gamma \vdash \Delta_1, B, A, \Delta_2} \text{ (ER)}$$

$$\frac{\Gamma_1 \vdash \Delta_1, A \quad A, \Gamma_2 \vdash \Delta_2}{\Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2} \text{ (Cut)}$$

(where Γ, Δ are sequence of logical formulae)

Inference rules (cont.)

- Inference rules for **logical connectives**:

$$\frac{A, \Gamma \vdash \Delta}{A \wedge B, \Gamma \vdash \Delta} (\wedge L_1)$$

$$\frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, A \vee B} (\vee R_1)$$

$$\frac{B, \Gamma \vdash \Delta}{A \wedge B, \Gamma \vdash \Delta} (\wedge L_2)$$

$$\frac{\Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, A \vee B} (\vee R_2)$$

$$\frac{A, \Gamma_1 \vdash \Delta_1 \quad B, \Gamma_2 \vdash \Delta_2}{A \vee B, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2} (\vee L)$$

$$\frac{\Gamma_1 \vdash \Delta_1, A \quad \Gamma_2 \vdash \Delta_2, B}{\Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, A \wedge B} (\wedge R)$$

$$\frac{\Gamma_1 \vdash \Delta_1, A \quad B, \Gamma_2 \vdash \Delta_2}{A \rightarrow B, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2} (\rightarrow L)$$

$$\frac{A, \Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, A \rightarrow B} (\rightarrow R)$$

$$\frac{\Gamma \vdash \Delta, A}{\neg A, \Gamma \vdash \Delta} (\neg L)$$

$$\frac{A, \Gamma \vdash \Delta}{\Gamma \vdash \Delta, \neg A} (\neg R)$$

LK Axiom

$$\boxed{\frac{}{A \vdash A}} \text{ (I)}$$

- Meaning:
 - A can be inferred from A .
- LK has only one axiom.
 - Since A can be any formula, there are infinitely many axioms.
 - Find an appropriate formula for A .
- Examples:

$$\frac{}{p \vdash p} \text{ (I)} \quad \frac{}{p \wedge q \vdash p \wedge q} \text{ (I)} \quad \frac{}{p \rightarrow q \vee r \vdash p \rightarrow q \vee r} \text{ (I)}$$

$$\frac{}{A \vee B \vdash A \vee B} \text{ (I)}$$

Axioms for Constants

$$\boxed{\frac{}{\vdash T} (T) \quad \frac{}{\perp \vdash} (\perp)}$$

- Meaning:
 - True can be inferred always.
 - False cannot infer anything.

Weakening, Contraction and Exchange

$$\frac{\Gamma \vdash \Delta}{A, \Gamma \vdash \Delta} \text{ (WL)}$$

$$\frac{\Gamma \vdash \Delta}{\Gamma \vdash \Delta, A} \text{ (WR)}$$

- **weakening**

- Any formula may be added to antecedent or succedent.

$$\frac{A, A, \Gamma \vdash \Delta}{A, \Gamma \vdash \Delta} \text{ (CL)}$$

$$\frac{\Gamma \vdash \Delta, A, A}{\Gamma \vdash \Delta, A} \text{ (CR)}$$

- **contraction**

- The same formulae can be merged (or contracted).

$$\frac{\Gamma_1, A, B, \Gamma_2 \vdash \Delta}{\Gamma_1, B, A, \Gamma_2 \vdash \Delta} \text{ (EL)}$$

$$\frac{\Gamma \vdash \Delta_1, A, B, \Delta_2}{\Gamma \vdash \Delta_1, B, A, \Delta_2} \text{ (ER)}$$

- **exchange**

- The order of formulae in antecedent or succedent may be changed.

Cut

$$\boxed{
 \frac{\Gamma_1 \vdash \Delta_1, A \quad A, \Gamma_2 \vdash \Delta_2}{\Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2} \text{ (Cut)}}$$

- **CUT**

- From a sequent having A in succedent and a sequent having A in antecedent, infer a sequent removing A .
- When it is difficult to show $\Gamma_1 \vdash \Delta_2$,
 - Show $\Gamma_1 \vdash A$ first, and
 - Infer $A \vdash \Delta_2$.

$$\frac{\Gamma_1 \vdash A \quad A \vdash \Delta_2}{\Gamma_1 \vdash \Delta_2} \text{ (Cut)}$$

Left and Right

- Conclusion sequent has a logical connective.

$$\frac{A, \Gamma \vdash \Delta}{A \wedge B, \Gamma \vdash \Delta} (\wedge L_1)$$

$$\frac{B, \Gamma \vdash \Delta}{A \wedge B, \Gamma \vdash \Delta} (\wedge L_2)$$

$$\frac{A, \Gamma_1 \vdash \Delta_1 \quad B, \Gamma_2 \vdash \Delta_2}{A \vee B, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2} (\vee L)$$

$$\frac{\Gamma_1 \vdash \Delta_1, A \quad B, \Gamma_2 \vdash \Delta_2}{A \rightarrow B, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2} (\rightarrow L)$$

$$\frac{\Gamma \vdash \Delta, A}{\neg A, \Gamma \vdash \Delta} (\neg L)$$

$$\frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, A \vee B} (\vee R_1)$$

$$\frac{\Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, A \vee B} (\vee R_2)$$

$$\frac{\Gamma_1 \vdash \Delta_1, A \quad \Gamma_2 \vdash \Delta_2, B}{\Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, A \wedge B} (\wedge R)$$

$$\frac{A, \Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, A \rightarrow B} (\rightarrow R)$$

$$\frac{A, \Gamma \vdash \Delta}{\Gamma \vdash \Delta, \neg A} (\neg R)$$

left: antecedent has a logical connective

right: consequent has a logical connective

Inference Rules for \wedge

$$\frac{A, \Gamma \vdash \Delta}{A \wedge B, \Gamma \vdash \Delta} (\wedge L_1)$$

$$\frac{B, \Gamma \vdash \Delta}{A \wedge B, \Gamma \vdash \Delta} (\wedge L_2)$$

$$\frac{\Gamma_1 \vdash \Delta_1, A \quad \Gamma_2 \vdash \Delta_2, B}{\Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, A \wedge B} (\wedge R)$$

- Two left rules: $\wedge L_1$, $\wedge L_2$
 - Add \wedge to the antecedent
 - Make A to $A \wedge B$
 - Make B to $A \wedge B$
- One right rule: $\wedge R$
 - Add \wedge to the succedent
 - Combine A and B , and make $A \wedge B$
 - From two premises, infer one conclusion.

Inference Rules for \vee

$$\frac{A, \Gamma_1 \vdash \Delta_1 \quad B, \Gamma_2 \vdash \Delta_2}{A \vee B, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2} (\vee L)$$

$$\frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, A \vee B} (\vee R_1)$$

$$\frac{\Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, A \vee B} (\vee R_2)$$

- One left rule: $\vee L$
 - Add \vee to the antecedent.
 - Combine A and B , to make $A \vee B$
 - From two premises, infer one conclusion.
- Two right rules: $\vee R_1$, $\vee R_2$
 - Add \vee to the succedent.
 - Make A to $A \vee B$
 - Make B to $A \vee B$

Inference Rules for \rightarrow

$$\frac{\Gamma_1 \vdash \Delta_1, A \quad B, \Gamma_2 \vdash \Delta_2}{A \rightarrow B, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2} (\rightarrow L)$$

$$\frac{A, \Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, A \rightarrow B} (\rightarrow R)$$

- One left rule: $\rightarrow L$
 - Add \rightarrow to the antecedent.
 - Combine A in the succedent and B in the antecedent, make $A \rightarrow B$ in the antecedent.
 - From two premises, infer one conclusion.
- One right rule: $\rightarrow R$
 - Add \rightarrow to the succedent.
 - Combine A in the antecedent and B in the succedent, make $A \rightarrow B$ in the succedent.

Inference Rules for \neg

$$\frac{\Gamma \vdash \Delta, A}{\neg A, \Gamma \vdash \Delta} (\neg L)$$

$$\frac{A, \Gamma \vdash \Delta}{\Gamma \vdash \Delta, \neg A} (\neg R)$$

- One left rule: $\neg L$
 - Add \neg to the antecedent.
 - Move A in the succedent to $\neg A$ in the antecedent.
- One right rule: $\neg R$
 - Add \neg to the succedent.
 - Move A in the antecedent to $\neg A$ in the succedent.

LK Proof Figure

- LK *Proof Figure*:
 - Start from initial sequent (or constants) and apply inference rules.
 - The bottom sequent is called *end sequent* of the proof figure.
- Example: proof figure

$$\begin{array}{c}
 \frac{}{A \vdash A} \text{ (I)} \\
 \frac{}{\vdash A, \neg A} \text{ (}\neg\text{R)} \\
 \frac{}{\vdash A, A \vee \neg A} \text{ (}\vee\text{R}_2\text{)} \\
 \frac{}{\vdash A \vee \neg A, A} \text{ (ER)} \\
 \frac{}{\vdash A \vee \neg A, A \vee \neg A} \text{ (}\vee\text{R}_1\text{)} \\
 \frac{}{\vdash A \vee \neg A} \text{ (CR)}
 \end{array}$$

initial sequent ←
 end sequent ←

- When there is a proof figure of which end sequent is S , S is *provable* in LK.

Exercise

- Show proof figures of the following propositions:
 - $A \rightarrow \neg \neg A$
 - $\neg \neg A \rightarrow A$
 - $A \wedge B \rightarrow B \wedge A$
 - $A \vee B \rightarrow B \vee A$
 - $\neg(A \wedge \neg B) \rightarrow (A \rightarrow B)$
 - $(A \rightarrow B) \rightarrow \neg(A \wedge \neg B)$

Summary

- Inference
 - Axiom
 - Theorem
- LK System
 - Sequent calculus
 - Initial sequent
 - LK inference rules
- Proof
 - Proof figure