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So Far

- Proposition

- Sentences of which truth does not change.
Propositional variables
Logical connectives (A, V, —, —)
Logical formula
Truth table
- Tautology

- Normal form
- Disjunctive normal form
- Conjunctive normal form
- Restricting logical connectives



Inference (Deduction)

- Using truth table to show the correctness of propositions
- Calculate the truth value from the truth value of propositional variables.

- Inference
- Infer new correct proposition from correct propositions already known
- Apply inference rules to propositions
- “Infer A from premises By, ..., B,'

- Inference rule
- Rule to infer correct proposition from correct premise propositions

- Example:
- FromAand A — B, infer B.
- modus ponens or syllogism

- "All men are mortal' and "Socrates is a man', therefore "Socrates is
mortal'.



Axiom and Theorem

« AXIom

- Premises which we believe correct.
- "There is only one straight line which goes through two different points.’
- "Parallel straight lines never meet.'

- Theorem
- Propositions which are inferred from axioms using inference rules

- Proof is the inference steps of theorem
- "The sum of internal angles of any triangle is 180 degrees.’
- "Pythagorean theorem’



Formal Logical Framework

- Framework for handling logic formally
- Framework for handling logical formulae
- Consist of axioms and inference rules

- Frameworks for Classical Propositional Logic:
- Hilbert framework (Hilbert style)
- Axiomatic framework
- Only one inference rule: modus ponens
- Natural Deduction by Gentzen
- NK framework (NK system)
- Close to ordinary (human) inference
- Sequent Calculus by Gentzen
- LK framework (LK system)
- Easy to formalize



R
LK Sequent

- LK system uses sequent :

__________________________________________________

- Intuitive meaning
- If A; to A,,, are true, at least one of B; to B,, is also true.

- F'is called:

| turnstile
- turnstyle ;
'tee i Al,---’AmI_Bl,---,Bn
: \ J \ |
: ! Y !
| antecedent l
- A4,...,A_+By,...,B, | ameesdemt succedent :

- A4,...,A,, antecedent (assumption)
- B4,...,B, succedent (consequence)
- The succedent is inferred from the antecedent.'



Special Cases for Sequent

_____________________________________________________

_____________________________________________________

morncanbe0
*+By,...,B,
- At least one of B; to B, is true.
- +B
- Bis true.
c Ay, A b
- If A, to A,,, are true, contradicts.
- At least one of 4, to 4,, is not true.
cAF
- A IS not true.
- F
- Contradiction



. R
An Example of LK Inference Rules

PTTTTTTTTTTITTTmeemmeeees / premise sequent
- AATEHA =

e o o o i — — — — ———————— o ——————————— -]

- Given the premise sequent, infer the conclusion sequent.
- A i1s a logical formula

- I'and A are sequence of logical formulae.
- T" or A or both may be empty.

- Examples:
AAB,CHD AAFrAANB AVB,AVBFAAB
(CL) (CL) (CL)
AB,C+D A+FrAAB AVBFrAAB

p—->qVr,poqVr,pAsts—>t

(CL)
p—->qVr,p—>qks—t



. S
LK Axiom and Inference Rules

- Axiom: Initial Sequent and Constants

(L)

(1) (T)
AL A FT 1 F

- Inference rules for structure: weakening, contraction, exchange, cut

['FA ['FA
(WL) (WR)
AT FA ['FAA
AATFEFA I'FAAA
(cL) (CR)
AT FA 'FAA
I1A B, I, FA I'FA,AB,A
L 2 (EL) ! 2 (ER)
Iy, B AT, F A [+ Ay B, A A,
ICFALA AL EA
! ! 2 2 (Cut)
[, FA A,

(where T, A are sequence of logical formulae)



Inference rules (cont.)

- Inference rules for logical connectives:

ATFEFA 'FAA
(AL,) ’ (VR,)
AAB,TFA TFAAVB
B,T+FA
(AL,) 4B (VR,)
AAB,T+A T-AAVB
Al Ay BT, FA
1 1 2 2 (L) Fl F Al,A Fz F Az,B (AR)
A VB; Fl) FZ F Al'AZ Fl' FZ - Al,Az,A ANB
Ih+A,A B, I, A, ATFAB
(-L) (»R)
A- BT, I, FALA, 'rAA-> B
[FAA AT FA
(—L) (—R)



LK Axiom

_______________________________________

- Meaning:
- A can be inferred from A .

- LK has only one axiom.
- Since A can be any formula, there are infinitely many axioms.
- Find an appropriate formula for A .

- Examples:

Q) () Q)
prp pAqQFEDPAQ p=>qVrrp—>qVr

()
AVBFrAVEB



Axioms for Constants

- Meaning:
- True can be inferred always.
- False cannot infer anything.



Weakening, Contraction and Exchange

- weakening
- Any formula may be added to antecedent or succedent.

- contraction
- The same formulae can be merged (or contracted).

ry,A BT, +A ['+Ay A B, A,
(EL) (ER)
I,B,A T, FA I'A,BAA,
- exchange

- The order of formulae in antecedent or succedent may be changed.



(Cut)

* Cut

- From a sequent having A in succedent and a sequent having A4 in
antecedent, infer a sequent removing A .

- When it is difficult to show I; F A,
- Show I + A first, and
cInferA+ A, .

LLFA  AFA,
I, kA,

(Cut)



Left and Right

- Conclusion sequent has a logical connective.

ATFA [+AA
(ALy) (VR))
AABTFA | [+AAVB
B,T+A o ['+AB
(AL,) ! ! (VR,)
AABTFA L [+AAVB
A, Fl F Al B, FZ F Az i i Fl F Al;A FZ F AZ)B
(vL) Lo (AR)
AVB,T,T, F Ay, A, . TuT, R4, AAB
[ FALA BT, kA o AT+ AB
1 1 2 2 (SL) | : (-»R)
A - B,T,T, Ay A, o [+AA—B
[+AA o ATFA
(—L) : (—R)
—ATFA [+A—A

left: antecedent has a logical connective right: consequent has a logical connective



Inference Rules for A

_________________________________________________________________________________________________

ATrEA
AANB,TFA Fll-Al,A FZI-AZ,B (AR)
BIrA [T, kA, A, AAB
AAB,T+A

_________________________________________________________________________________________________

- Two left rules: AL, AL,
- Add A to the antecedent
- Make Ato AAB
- Make Bto AAB

- One right rule: AR
- Add A to the succedent
- Combine A and B, and make A A B
- From two premises, infer one conclusion.



Inference Rules for v

_________________________________________________________________________________________________

'FAA VR
A,Fl I'Al B'FZ |‘A2 ( ) FI_A,AvB Vl
VL
AV B, T, T, kA A, ['+AB
(VR,)
'FAAVEB

_________________________________________________________________________________________________

- One left rule: vL
- Add V to the antecedent.
- Combine 4 and B ,to make AV B
- From two premises, infer one conclusion.

- Two right rules: VR,, VR,
- Add V to the succedent.
- Make Ato AV B
- Make Bto AV B



Inference Rules for —

—————————————————————————————————————————————————————————————————————————————————————————————————

IM+rALA BT FA, L) ATFAB R
A - B,I1, I FAg A, '+AA-B

e o o o = = = = = = = = = - = - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - — -]

- One left rule: -L
- Add - to the antecedent.

- Combine A in the succedent and B in the antecedent, make A - B
In the antecedent.

- From two premises, infer one conclusion.

- One right rule: =R
- Add - to the succedent.

- Combine A in the antecedent and B in the succedent, make A - B
In the succedent.



Inference Rules for —

_________________________________________________________________________________________________

- One left rule: —L
- Add — to the antecedent.
- Move A in the succedent to =4 in the antecedent.

- One right rule: =R
- Add — to the succedent.
- Move A in the antecedent to =4 in the succedent.



LK Proof Figure

- LK Proof Figure:
- Start from initial sequent (or constants) and apply inference rules.
- The bottom sequent is called end sequent of the proof figure.

- Example: proof figure

Ar A é(')/— initial sequent
A4
FA,AV A
FAV -4, A
FAV-A,AV -4
FAV A

(VR,)

(ER)

(VR,)

(CR)
S——— end sequent

- When there is a proof figure of which end sequent is S, S is provable in LK.



Exercise

- Show proof figures of the following propositions:
cA - -4
c——A—- A
cAANB ->BAA
cAVB->BVA
«—1(AAN—B) - (4> B)
(A - B) -> —(AA—B)



Summary

- Inference
« AXiom
- Theorem

- LK System
- Sequent calculus
- Initial sequent
- LK inference rules

- Proof
- Proof figure
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