FUNDAMENTALS OF LOGIC NO.5 PROOF (EXERCISE)

Tatsuya Hagino hagino@sfc.keio.ac.jp

lecture URL

https://vu5.sfc.keio.ac.jp/slide/

So Far

- Proposition
 - Logical connectives $(\land, \lor, \rightarrow, \neg)$
 - Truth table
 - Tautology
- Normal form
 - Disjunctive normal form
 - Conjunctive normal form
- Proof
 - Axiom and theorem
 - LK logical framework

Syntactic Meaning of Sequent

Theorem: The followings are equivalent:

- 1. A sequent $A_1, \dots, A_m \vdash B_1, \dots, B_n$ is provable in LK.
- 2. A sequent $A_1 \wedge \cdots \wedge A_m \vdash B_1 \vee \cdots \vee B_n$ is provable in LK.
- 3. A formula $A_1 \wedge \cdots \wedge A_m \rightarrow B_1 \vee \cdots \vee B_n$ is provable in LK.

Proof: For simplicity, let us show the case of m = n = 2.

• First, if (1) holds, (2) also holds.

$$\frac{A_{1}, A_{2} \vdash B_{1}, B_{2}}{A_{1}, A_{2} \vdash B_{1}, B_{1} \lor B_{2}} (\lor R_{2})$$

$$\frac{A_{1}, A_{2} \vdash B_{1} \lor B_{2}, B_{1}}{A_{1}, A_{2} \vdash B_{1} \lor B_{2}, B_{1}} (\lor R_{1})$$

$$\frac{A_{1}, A_{2} \vdash B_{1} \lor B_{2}, B_{1} \lor B_{2}}{A_{1}, A_{2} \vdash B_{1} \lor B_{2}} (CR)$$

$$\frac{A_{1}, A_{2} \vdash B_{1} \lor B_{2}}{A_{2}, A_{1} \land A_{2} \vdash B_{1} \lor B_{2}} (EL)$$

$$\frac{A_{1} \land A_{2}, A_{1} \land A_{2} \vdash B_{1} \lor B_{2}}{A_{1} \land A_{2}, A_{1} \land A_{2} \vdash B_{1} \lor B_{2}} (CL)$$

Proof (cont.)

Theorem: The followings are equivalent:

- 1. A sequent $A_1, ..., A_m \vdash B_1, ..., B_n$ is provable in LK.
- 2. A sequent $A_1 \wedge \cdots \wedge A_m \vdash B_1 \vee \cdots \vee B_n$ is provable in LK.
- 3. A formula $A_1 \wedge \cdots \wedge A_m \rightarrow B_1 \vee \cdots \vee B_n$ is provable in LK.

Proof (cont.):

Secondly, if (2) holds, (3) also holds.

$$\frac{A_1 \land A_2 \vdash B_1 \lor B_2}{\vdash A_1 \land A_2 \to B_1 \lor B_2} (\to R)$$

Proof (cont.)

Theorem: The followings are equivalent:

- 1. A sequent $A_1, ..., A_m \vdash B_1, ..., B_n$ is provable in LK.
- 2. A sequent $A_1 \wedge \cdots \wedge A_m \vdash B_1 \vee \cdots \vee B_n$ is provable in LK.
- 3. A formula $A_1 \wedge \cdots \wedge A_m \rightarrow B_1 \vee \cdots \vee B_n$ is provable in LK.

Proof (cont.):

- Finally, if (3) holds, (1) also holds.
- Therefore, (2) follows from (1), (3) follows from (2) and (1) follows from (3).
- Hence, (1), (2) and (3) are equivalent.

$$\frac{A_{1} \vdash A_{1}}{A_{2} \land A_{1} \vdash A_{1}} (\text{WL}) \qquad \frac{A_{2} \vdash A_{2}}{A_{1} \land A_{2} \vdash A_{1}} (\text{WL}) \qquad \frac{B_{1} \vdash B_{1}}{B_{1} \vdash B_{1}} (\text{WR}) \qquad \frac{B_{2} \vdash B_{2}}{B_{2} \vdash B_{2} \land B_{1}} (\text{WR}) \qquad \frac{B_{2} \vdash B_{2} \land B_{1}}{B_{2} \vdash B_{1} \land B_{2}} (\text{ER}) \qquad (\text{VL}) \qquad (\text{V$$

$$A_1,A_2 \vdash B_1,B_2$$

Meaning of LK Sequent

LK sequent

$$A_1, \ldots, A_m \vdash B_1, \ldots, B_n$$

- Intuitive meaning:
 - If we assume A_1 to A_m , we can infer one of B_1 to B_n .
- Syntactical meaning:
 - $A_1 \wedge \cdots \wedge A_m \vdash B_1 \vee \cdots \vee B_n$
 - $A_1 \wedge \cdots \wedge A_m \rightarrow B_1 \vee \cdots \vee B_n$
- Interpretation of syntax:
 - Antecedent A_1, \ldots, A_m are connected by `and'.
 - Succedent B_1, \ldots, B_n are connected by \mathbf{or}' .
 - ⊦ is `imply'.

Tautology for Sequent

- Extend the notion of tautology to sequent.
- Let Γ be a sequence of formulae A_1, \ldots, A_m :

$$\Gamma^* = \left\{egin{array}{ll} A_1 ee \cdots ee A_m & ext{when } m>0 \ & oxed{\perp} & ext{when } m=0 \end{array}
ight.$$
 $\Gamma_* = \left\{egin{array}{ll} A_1 ee \cdots ee A_m & ext{when } m>0 \ & oxed{\Gamma} & ext{when } m=0 \end{array}
ight.$

• Sequent $\Gamma \vdash \Delta$ is a tautology $\Leftrightarrow \Gamma_* \to \Delta^*$ is a tautology.

Sequent
$$\Gamma \vdash \Delta$$
 Logical Formula $\Gamma_* \to \Delta^*$

Extending Inference Rules

- Applying inference rules to formula in the sequent other than left-most or right-most one.
 - Using exchange rules, formula at any position can be moved to leftmost or right-most position.
 - Extend inference rules of contraction, weakening and logical connectives to formula at any position.

Lemma

• When S can be inferred from S_1, S_2, \ldots, S_n using LK inference rules, we write:

$$\frac{S_1 \quad S_2 \quad \dots \quad S_n}{S}$$

The above inference can be used in other proofs as a lemma.

Example: lemma

$$\frac{\Gamma \vdash \Delta_{1}, A, B, \Delta_{2}}{\Gamma \vdash \Delta_{1}, A \lor B, \Delta_{2}} \qquad \frac{\Gamma_{1}, A, \Gamma_{2} \vdash \Delta}{\Gamma_{1}, A \lor B, \Gamma_{2} \vdash \Delta}$$

Exercises

- Prove the following tautologies:
 - $A \rightarrow (B \rightarrow A)$

•
$$(A \to (B \to C)) \to ((A \to B) \to (A \to C))$$

•
$$(A \to B) \to ((B \to C) \to (A \to C))$$

•
$$(A \to C) \to ((B \to C) \to (A \lor B \to C))$$

•
$$(A \to B) \to ((A \to \neg B) \to \neg A)$$

•
$$(A \land B) \land C \rightarrow A \land (B \land C)$$

•
$$(A \lor B) \lor C \rightarrow A \lor (B \lor C)$$

•
$$\neg (A \land B) \rightarrow (\neg A \lor \neg B)$$

•
$$(\neg A \lor \neg B) \to \neg (A \land B)$$

•
$$(A \to B) \to (\neg B \to \neg A)$$

•
$$(\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$$

Bottom-up and Top-down Proof

- Bottom-up proof
 - Starting with initial sequent, apply inference rules until it becomes the end sequent.
 - Intermediate state is also a valid proof figure.

- Top-down proof
 - Starting with the end sequent, apply inference rules backward until it becomes the initial sequent.
 - Intermediate state is not a proof figure, but it is just a lemma.

$$\frac{A \vdash A \qquad B \to C \vdash B \to C}{A \to (B \to C), A \vdash B \to C} (\to L)$$

$$\frac{B \vdash B \qquad C \vdash C}{B \to C, B \vdash C} (\to L)$$
Bottom-up

$$\frac{A, A \to B, A \to (B \to C) \vdash C}{A \to B, A \to (B \to C) \vdash A \to C} \xrightarrow{(\to R)} \xrightarrow{(\to R)} \xrightarrow{A \to (B \to C) \vdash (A \to B) \to (A \to C)} \xrightarrow{(\to R)} \xrightarrow{(\to R)} + (A \to (B \to C)) \to ((A \to B) \to (A \to C))} \xrightarrow{(\to R)}$$

Summary

- LK Sequent
 - Syntactical meaning
 - Tautology
- Inference
 - Lemma