FUNDAMENTALS OF LOGIC NO.7 PREDICATE LOGIC

Tatsuya Hagino hagino@sfc.keio.ac.jp

lecture URL

https://vu5.sfc.keio.ac.jp/slide/

So Far

- Propositional Logic
 - Logical Connectives (Λ , \forall , \rightarrow , \neg)
 - Truth Table
 - Tautology
 - Normal Form
 - Axiom and Proof
 - LK Frame Work (Sequent Calculus)
 - Soundness and Completeness

Limitation of Propositional Logic

- Propositional Logic
 - Each proposition is either true or false.
 - The truth value does not change.
 - The truth value does not depend of objects which are referred in the proposition.
- Socrates problem:
 - Socrates is a man.
 - All men are mortal.
 - Therefore, Socrates is mortal.
- In propositional logic:
 - p = "Socrates is a man"
 - q = "All men are mortal"
 - r = "Socrates is mortal"

•
$$p \land q \rightarrow r$$
 ?

Propositional Logic to Predicate Logic

- Extend logic to handle objects and express properties and relations of objects.
- Set of objects
 - Integer
 - Human
- Variable over a set of objects
 - object variable
 - *x*, *y*, *z*, ...
- Name of object
 - object constant
 - Socrates, Pythagoras, 123, SFC, Keio, ...

Predicate

Predicate

- Object x has property P : P(x)
- Relation R holds between object x and object y : R(x, y)
- $Q(x_1, x_2, \ldots, x_n)$
 - Q holds for objects x_1, x_2, \ldots, x_n .
 - Q is a predicate with n variables.
- P(x) = "x is a man"
 - P(Socrates) = "Socrates is a man"
 - P(Pythagoras) = "Pythagoras is a man"
 - P(Taro) = "Taro is a man"
- R(x, y) = "x likes y"
 - R(Taro, Hanako) = "Taro likes Hanako"
 - R(Taro, Momoko) = "Taro likes Momoko"
 - R(Hanako, Taro) = "Hanako likes Taro"

Quantifier

- P(x)
 - Which x makes P hold?
 - Does it hold for any x?
 - Does it hold for some x ?

Quantifier

- $\forall x P(x)$
 - Universal quantifier
 - For any x, P(x) holds.
 - P(x) holds for all x.
- $\exists x P(x)$
 - Existential quantifier
 - For some x, P(x) holds.
 - There exists x which makes P(x) hold.
- Q(x) = "x is mortal"
 - $\forall x Q(x) = "Everybody is mortal"$
 - $\exists x Q(x) =$ "Someone is mortal", "There is someone who is mortal"

Predicate Logic

- Predicate Logic
 - Use predicates instead of propositional variables.
 - Four logical connectives: ∧, ∨, →, ¬
 - Two quantifiers: $\forall x, \exists x$
- Socrates example: P(x) = "x is a man", Q(x) = "x is mortal"
 - P(Socrates) = "Socrates is a man"
 - $\forall x (P(x) \rightarrow Q(x)) =$ "All men are mortal"
 - Q(Socrates) = "Socrates is mortal"
- Math example: P(x) = "x is a prime number bigger than 2",
 Q(x) = "x is an odd number"
 - P(7) = "7 is a prime number bigger than 2"
 - ∀x(P(x) → Q(x)) = "Any prime number bigger than 2 is an odd number"
 - *Q*(7) = "7 is an odd number"

Example (1)

- Let S(x) and M(x) be as follows:
 - *S*(*x*) = "*x* is an SFC student"
 - M(x) = "x likes math"
- Write the meaning of the following formulae:

= "	-	"
= "		"
= "		
= "		"
= "		"
= "		"
= "		н
= "		н
= "		"
= "		н
= "		"
= "		н
		<pre>= " = " = " = " = " = " = " = " = " = "</pre>

Example (2)

- Let L(x, y) mean "x likes y". Write the meaning of the following formulae:
 - = " 11 • $\forall x L(Taro, x)$ н • $\exists x L(Taro, x)$ = " = " 11 • $\forall x L(x, \text{Taro})$ • $\exists x L(x, Taro)$ = " Ш = " • $\forall x \forall y L(x, y)$ 11 • $\exists x \exists y L(x, y)$ 11 = " = " • $\forall x \exists y L(x, y)$ 11 = " 11 • $\exists x \forall y L(x, y)$ 11 • $\exists y \forall x L(x, y)$ = " • $\forall x \forall y (S(x) \rightarrow L(x, y)) = "$ Ш • $\forall x \forall y (S(y) \rightarrow L(x, y)) = "$ Ш
 - $\forall x (S(x) \rightarrow \forall y L(x, y)) = "$
 - $\forall x (\forall y L(x, y) \rightarrow S(x)) = "$

Language for Predicate Logic

- A set of symbols for predicate logic is called language.
 - It is different from linguistic language.
 - It is closer to vocabulary.
- A language *L* of predicate logic consists of the followings:
 - 1. Logical connectives: \land , \lor , \rightarrow , \neg
 - 2. Quantifiers: ∀, ∃
 - 3. Object variables: x, y, z, ...
 - 4. Object constants: *c*, *d*,...
 - 5. Function symbols: f, g, \ldots
 - 6. Predicate symbols: *P*, *Q*, ...

Terms

- A term of a language *L* is defined as follows:
 - 1. Object variables and constants of *L* are terms.
 - 2. For a function symbol f and m variables (arity m) in L, if t_1, \ldots, t_m are terms, $f(t_1, \ldots, t_m)$ is also a term.
- Example: Natural Number Theory
 - Object constants: 0, 1, etc.
 - Function symbols: S(x), +, ×, etc.
 - Predicate symbols: =, <, etc.
 - Terms
 - X
 - 0
 - $S(x) + (1 \times S(S(y)))$

Logical Formulae

• Logical Formulae of *L* are defined as follows:

- 1. For a predicate symbol *P* of *n* variables in *L*, if t_1, \ldots, t_n are terms, $P(t_1, \ldots, t_n)$ is a formula (atomic formula).
- 2. For formulae A and B, $(A \land B)$, $(A \lor B)$, $(A \to B)$ and $(\neg A)$ are formulae.
- 3. For a formula A and an object variable x, $(\forall x A)$ and $(\exists x A)$ are formulae.
- Example: Natural Number Theory
 - $\exists x(x \times z = y)$
 - $\forall x \forall y ((x + S(y)) = S(x + y))$

Bound and Free Variables

Bound variable

- In $\exists z(x \times z = y)$, z of $x \times z = y$ is bound by $\exists z$.
- Bound variables can be renamed without changing the meaning.
- $\exists w(x \times w = y)$
- Variables which are not bound are free variables.
 - In $\exists z(x \times z = y)$, x and y are free variables.
- Variables may be bound or free depending on their occurrence.

•
$$\exists z(x \times z = y) \land \exists y(x + x = y)$$

Closed Formulae

- When a logical formula *A* does not contain free variables, *A* is called a closed logical formula.
 - $\forall x (S(x) \rightarrow \forall y L(x, y))$
- If x₁,..., x_n are free variables of a logical formula A,
 ∀x₁...∀x_n A
 - is calles universal closure of A.
- In mathematics, universal quantifiers are often omitted.
 - Commutative law of addition x + y = y + x
 - Its universal closure: $\forall x \forall y(x + y = y + x)$

Assignment of Terms

• For a logical formula *A*, when all the free occurrence of *x* are replaced with a term *t*, it is called an assignment of *t* to *x*.

• A[t/x]

- Example
 - Let A be $\exists z(x \times z = y)$.
 - A[w/y] is $\exists z(x \times z = w)$.
 - A[x/y] is $\exists z(x \times z = x)$.
 - A[(x + w)/x] is $\exists z((x + w) \times z = y)$.
- If bound relationship is affected by an assignment, the bound variable must be changed before the assignment.
 - A[z/y] is not $\exists z(x \times z = z)$, but $\exists w(x \times w = z)$.
 - In general, $(\forall xA)[t/x]$ is $\forall u(A[u/x][t/x])$ where u is a variable which does not occur in A or t.

Sub-formulae

- Define sub-formulae similar to propositional logic.
 - 1. A is a sub-formula of A.
 - 2. A and B are sub-formulae of $(A \land B)$.
 - 3. A and B are sub-formulae of $(A \lor B)$.
 - 4. A and B are sub-formulae of $(A \rightarrow B)$.
 - 5. A is a sub-formula of $(\neg A)$.
 - 6. For any term t, A[t/x] is a sub-formula of $\forall xA$.
 - 7. For any term t, A[t/x] is a sub-formula of $\exists xA$.
- When a formula contains quantifiers, there are in finitely many sub-formulae.
 - Sub-formulae of $\forall x Q(x)$ are: $\forall x Q(x), Q(\text{Socrates}), Q(\text{Taro}), Q(\text{mother}(\text{Taro})), ...$

Summary

- Predicate Logic
 - Limitation of propositional logic
 - Description about objects
- Logical Formulae of Predicate Logic
 - Language
 - Term
 - Logical Formulae
- Quantifiers
 - Bound and free variables
 - Closed formulae
 - Universal closure
 - Assingment