FUNDAMENTALS OF LOGIC NO. 7 PREDICATE LOGIC

Tatsuya Hagino
hagino@sfc.keio.ac.jp
lecture URL
https://vu5.sfc.keio.ac.jp/slide/

So Far

- Propositional Logic
- Logical Connectives ($\wedge, \vee, \rightarrow, \neg)$
- Truth Table
- Tautology
- Normal Form
- Axiom and Proof
- LK Frame Work (Sequent Calculus)
- Soundness and Completeness

Limitation of Propositional Logic

- Propositional Logic
- Each proposition is either true or false.
- The truth value does not change.
- The truth value does not depend of objects which are referred in the proposition.
- Socrates problem:
- Socrates is a man.
- All men are mortal.
- Therefore, Socrates is mortal.
- In propositional logic:
- p = "Socrates is a man"
- $q=$ "All men are mortal"
- $r=$ "Socrates is mortal"
- $p \wedge q \rightarrow r$?

Propositional Logic to Predicate Logic

- Extend logic to handle objects and express properties and relations of objects.
- Set of objects
- Integer
- Human
- Variable over a set of objects
- object variable
- x, y, z, \ldots
- Name of object
- object constant
- Socrates, Pythagoras, 123, SFC, Keio, ...

Predicate

- Predicate
- Object x has property $P: P(x)$
- Relation R holds between object x and object $y: R(x, y)$
- $Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Q holds for objects $x_{1}, x_{2}, \ldots, x_{n}$.
- Q is a predicate with n variables.
- $P(x)=$ " x is a man"
- $P($ Socrates $)=$ "Socrates is a man"
- $P($ Pythagoras $)=$ "Pythagoras is a man"
- $P($ Taro $)=$ "Taro is a man"
- $R(x, y)=$ " x likes y "
- $R($ Taro, Hanako $)=$ "Taro likes Hanako"
- R (Taro, Momoko) $=$ "Taro likes Momoko"
- $R($ Hanako, Taro $)=$ "Hanako likes Taro"

Quantifier

- $P(x)$
- Which x makes P hold?
- Does it hold for any x ?
- Does it hold for some x ?
- Quantifier
- $\forall x P(x)$
- Universal quantifier
- For any $x, P(x)$ holds.
- $P(x)$ holds for all x.
- $\exists x P(x)$
- Existential quantifier
- For some $x, P(x)$ holds.
- There exists x which makes $P(x)$ hold.
- $Q(x)=$ " x is mortal"
- $\forall x Q(x)=$ "Everybody is mortal"
- $\exists x Q(x)=$ "Someone is mortal", "There is someone who is mortal"

Predicate Logic

- Predicate Logic
- Use predicates instead of propositional variables.
- Four logical connectives: $\wedge, \vee, \rightarrow, \neg$
- Two quantifiers: $\forall x, \exists x$
- Socrates example: $P(x)=$ " x is a man", $Q(x)=$ " x is mortal"
- $P($ Socrates $)=$ "Socrates is a man"
- $\forall x(P(x) \rightarrow Q(x))=$ "All men are mortal"
- Q (Socrates) $=$ "Socrates is mortal"
- Math example: $P(x)=$ "x is a prime number bigger than 2 ", $Q(x)=$ " x is an odd number"
- $P(7)=$ " 7 is a prime number bigger than 2"
- $\forall x(P(x) \rightarrow Q(x))=$ "Any prime number bigger than 2 is an odd number"
- $Q(7)=$ " 7 is an odd number"

Example (1)

- Let $S(x)$ and $M(x)$ be as follows:
- $S(x)=$ " x is an SFC student"
- $M(x)=$ " x likes math"
- Write the meaning of the following formulae:

- $\forall x S(x)$	$="$
- $\exists x S(x)$	$="$
- $\forall x(S(x) \rightarrow M(x))$	$="$
- $\exists x(S(x) \wedge M(x))$	$="$
- $\forall x(S(x) \rightarrow \neg M(x))$	$="$
- $\forall x(\neg S(x) \rightarrow M(x))$	$="$
- $\forall x \neg S(x)$	$="$
- $\neg \forall x S(x)$	$="$
- $\neg \forall x(S(x) \rightarrow M(x))$	$="$
- $\forall x \neg(S(x) \rightarrow M(x))$	$="$
- $\exists x \neg S(x)$	$="$
- $\neg \exists x S(x)$	$="$

Example (2)

- Let $L(x, y)$ mean " x likes y ". Write the meaning of the following formulae:
- $\forall x L($ Taro,$x)="$
- $\exists x L($ Taro $x)="$
- $\forall x L(x$, Taro $)="$
- $\exists x L(x$, Taro $)="$
- $\forall x \forall y L(x, y)="$
- $\exists x \exists y L(x, y)=$ "
- $\forall x \exists y L(x, y)="$
- $\exists x \forall y L(x, y) \quad="$
- $\exists y \forall x L(x, y)="$
- $\forall x \forall y(S(x) \rightarrow L(x, y))="$
- $\forall x \forall y(S(y) \rightarrow L(x, y))="$
- $\forall x(S(x) \rightarrow \forall y L(x, y))="$
- $\forall x(\forall y L(x, y) \rightarrow S(x))="$
"

Language for Predicate Logic

- A set of symbols for predicate logic is called language.
- It is different from linguistic language.
- It is closer to vocabulary.
- A language L of predicate logic consists of the followings:

1. Logical connectives: $\wedge, \vee, \rightarrow, \neg$
2. Quantifiers: \forall, \exists
3. Object variables: x, y, z, \ldots
4. Object constants: c, d, \ldots
5. Function symbols: f, g, \ldots
6. Predicate symbols: P, Q, \ldots

Terms

- A term of a language L is defined as follows:

1. Object variables and constants of L are terms.
2. For a function symbol f and m variables (arity m) in L, if t_{1}, \ldots, t_{m} are terms, $f\left(t_{1}, \ldots, t_{m}\right)$ is also a term.

- Example: Natural Number Theory
- Object constants: 0, 1, etc.
- Function symbols: $S(x),+, \times$, etc.
- Predicate symbols: $=,<$, etc.
- Terms
- x
- 0
- $S(x)+(1 \times S(S(y)))$

Logical Formulae

- Logical Formulae of L are defined as follows:

1. For a predicate symbol P of n variables in L, if t_{1}, \ldots, t_{n} are terms, $P\left(t_{1}, \ldots, t_{n}\right)$ is a formula (atomic formula).
2. For formulae A and $B,(A \wedge B),(A \vee B),(A \rightarrow B)$ and $(\neg A)$ are formulae.
3. For a formula A and an object variable $x,(\forall x A)$ and $(\exists x A)$ are formulae.

- Example: Natural Number Theory
- $\exists x(x \times z=y)$
- $\forall x \forall y((x+S(y))=S(x+y))$

Bound and Free Variables

- Bound variable
- In $\exists z(x \times z=y), z$ of $x \times z=y$ is bound by $\exists z$.
- Bound variables can be renamed without changing the meaning.
- $\exists w(x \times w=y)$
- Variables which are not bound are free variables.
- In $\exists z(x \times z=y), x$ and y are free variables.
- Variables may be bound or free depending on their occurrence.
- $\exists z(x \times z=y) \wedge \exists y(x+x=y)$

Closed Formulae

- When a logical formula A does not contain free variables, A is called a closed logical formula.
- $\forall x(S(x) \rightarrow \forall y L(x, y))$
- If x_{1}, \ldots, x_{n} are free variables of a logical formula A,
- $\forall x_{1} \ldots \forall x_{n} A$
- is calles universal closure of A.
- In mathematics, universal quantifiers are often omitted.
- Commutative law of addition $x+y=y+x$
- Its universal closure: $\forall x \forall y(x+y=y+x)$

Assignment of Terms

- For a logical formula A, when all the free occurrence of x are replaced with a term t, it is called an assignment of t to x.
- $A[t / x]$
- Example
- Let A be $\exists z(x \times z=y)$.
- $A[w / y]$ is $\exists z(x \times z=w)$.
- $A[x / y]$ is $\exists z(x \times z=x)$.
- $A[(x+w) / x]$ is $\exists z((x+w) \times z=y)$.
- If bound relationship is affected by an assignment, the bound variable must be changed before the assignment.
- $A[z / y]$ is not $\exists z(x \times z=z)$, but $\exists w(x \times w=z)$.
- In general, $(\forall x A)[t / x]$ is $\forall u(A[u / x][t / x])$ where u is a variable which does not occur in A or t.

Sub-formulae

- Define sub-formulae similar to propositional logic.

1. A is a sub-formula of A.
2. A and B are sub-formulae of $(A \wedge B)$.
3. A and B are sub-formulae of $(A \vee B)$.
4. A and B are sub-formulae of $(A \rightarrow B)$.
5. A is a sub-formula of $(\neg A)$.
6. For any term $t, A[t / x]$ is a sub-formula of $\forall x A$.
7. For any term $t, A[t / x]$ is a sub-formula of $\exists x A$.

- When a formula contains quantifiers, there are in finitely many sub-formulae.
- Sub-formulae of $\forall x Q(x)$ are:
$\forall x Q(x), Q$ (Socrates), Q (Taro), Q (mother(Taro)), ...

Summary

- Predicate Logic
- Limitation of propositional logic
- Description about objects
- Logical Formulae of Predicate Logic
- Language
- Term
- Logical Formulae
- Quantifiers
- Bound and free variables
- Closed formulae
- Universal closure
- Assingment

