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So Far
• Propositional Logic

• Logical Connectives (∧，∨，→，￢)
• Truth Table
• Tautology
• Normal Form
• Axiom and Proof
• LK Frame Work (Sequent Calculus)
• Soundness and Completeness
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Limitation of Propositional Logic
• Propositional Logic

• Each proposition is either true or false.
• The truth value does not change.
• The truth value does not depend of objects which are referred in the 

proposition.

• Socrates problem:
• Socrates is a man.
• All men are mortal.
• Therefore, Socrates is mortal.

• In propositional logic:
• 𝑝𝑝 = "Socrates is a man"
• 𝑞𝑞 = "All men are mortal"
• 𝑟𝑟 = "Socrates is mortal"
• 𝑝𝑝 ∧ 𝑞𝑞 → 𝑟𝑟 ?

3



Propositional Logic to Predicate Logic
• Extend logic to handle objects and express properties and 

relations of objects.

• Set of objects
• Integer
• Human

• Variable over a set of objects
• object variable
• 𝑥𝑥,𝑦𝑦, 𝑧𝑧, . . .

• Name of object
• object constant
• Socrates, Pythagoras, 123, SFC, Keio, ...
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Predicate
• Predicate

• Object 𝑥𝑥 has property 𝑃𝑃 : 𝑃𝑃 𝑥𝑥
• Relation 𝑅𝑅 holds between object 𝑥𝑥 and object 𝑦𝑦 : 𝑅𝑅 𝑥𝑥,𝑦𝑦

• 𝑄𝑄 𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑛𝑛
• 𝑄𝑄 holds for objects 𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑛𝑛 .
• 𝑄𝑄 is a predicate with 𝑛𝑛 variables.

• 𝑃𝑃 𝑥𝑥 = "𝑥𝑥 is a man"
• 𝑃𝑃 Socrates = "Socrates is a man"
• 𝑃𝑃 Pythagoras = "Pythagoras is a man"
• 𝑃𝑃 Taro = "Taro is a man"

• 𝑅𝑅 𝑥𝑥,𝑦𝑦 = "𝑥𝑥 likes 𝑦𝑦"
• 𝑅𝑅 Taro, Hanako = "Taro likes Hanako"
• 𝑅𝑅 Taro, Momoko = "Taro likes Momoko"
• 𝑅𝑅 Hanako, Taro = "Hanako likes Taro"
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Quantifier
• 𝑃𝑃(𝑥𝑥)

• Which 𝑥𝑥 makes 𝑃𝑃 hold?
• Does it hold for any 𝑥𝑥 ?
• Does it hold for some 𝑥𝑥 ?

• Quantifier
• ∀𝑥𝑥 𝑃𝑃(𝑥𝑥)

• Universal quantifier
• For any 𝑥𝑥 , 𝑃𝑃(𝑥𝑥) holds.
• 𝑃𝑃(𝑥𝑥) holds for all 𝑥𝑥 .

• ∃𝑥𝑥 𝑃𝑃(𝑥𝑥)
• Existential quantifier
• For some 𝑥𝑥 , 𝑃𝑃(𝑥𝑥) holds.
• There exists 𝑥𝑥 which makes 𝑃𝑃(𝑥𝑥) hold.

• 𝑄𝑄(𝑥𝑥) = "𝑥𝑥 is mortal"
• ∀𝑥𝑥 𝑄𝑄(𝑥𝑥) = "Everybody is mortal"
• ∃𝑥𝑥 𝑄𝑄(𝑥𝑥) = "Someone is mortal", "There is someone who is mortal"
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Predicate Logic
• Predicate Logic

• Use predicates instead of propositional variables.
• Four logical connectives: ∧，∨，→，￢

• Two quantifiers: ∀𝑥𝑥，∃𝑥𝑥

• Socrates example: 𝑃𝑃(𝑥𝑥) = "𝑥𝑥 is a man", 𝑄𝑄(𝑥𝑥) = "𝑥𝑥 is mortal" 
• 𝑃𝑃(Socrates) = "Socrates is a man"
• ∀𝑥𝑥 𝑃𝑃 𝑥𝑥 → 𝑄𝑄 𝑥𝑥 = "All men are mortal"
• 𝑄𝑄(Socrates) = "Socrates is mortal"

• Math example: 𝑃𝑃(𝑥𝑥) = "x is a prime number bigger than 2", 
𝑄𝑄(𝑥𝑥) = "𝑥𝑥 is an odd number"
• 𝑃𝑃(7) = "7 is a prime number bigger than 2"
• ∀𝑥𝑥 𝑃𝑃 𝑥𝑥 → 𝑄𝑄 𝑥𝑥 = "Any prime number bigger than 2 is an odd 

number"
• 𝑄𝑄(7) = "7 is an odd number"
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Example (1)
• Let 𝑆𝑆(𝑥𝑥) and 𝑀𝑀(𝑥𝑥) be as follows:

• 𝑆𝑆(𝑥𝑥) = "𝑥𝑥 is an SFC student"
• 𝑀𝑀(𝑥𝑥) = "𝑥𝑥 likes math"

• Write the meaning of the following formulae:
• ∀𝑥𝑥 𝑆𝑆(𝑥𝑥) = " "
• ∃𝑥𝑥 𝑆𝑆(𝑥𝑥) = " "
• ∀𝑥𝑥 𝑆𝑆 𝑥𝑥 → 𝑀𝑀 𝑥𝑥 = " "
• ∃𝑥𝑥 𝑆𝑆 𝑥𝑥 ∧ 𝑀𝑀 𝑥𝑥 = " "
• ∀𝑥𝑥 𝑆𝑆 𝑥𝑥 → ￢𝑀𝑀 𝑥𝑥 = " "
• ∀𝑥𝑥 ￢𝑆𝑆 𝑥𝑥 → 𝑀𝑀 𝑥𝑥 = " "
• ∀𝑥𝑥￢𝑆𝑆(𝑥𝑥) = " "
• ￢∀𝑥𝑥𝑥𝑥(𝑥𝑥) = " "
• ￢∀𝑥𝑥 𝑆𝑆 𝑥𝑥 → 𝑀𝑀 𝑥𝑥 = " "
• ∀𝑥𝑥￢ 𝑆𝑆 𝑥𝑥 → 𝑀𝑀 𝑥𝑥 = " "
• ∃𝑥𝑥￢𝑆𝑆(𝑥𝑥) = " "
• ￢∃𝑥𝑥𝑥𝑥(𝑥𝑥) = " "
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Example (2)
• Let 𝐿𝐿(𝑥𝑥,𝑦𝑦) mean "𝑥𝑥 likes 𝑦𝑦".  Write the meaning of the following 

formulae:
• ∀𝑥𝑥 𝐿𝐿 Taro, 𝑥𝑥 = " "
• ∃𝑥𝑥 𝐿𝐿 Taro, 𝑥𝑥 = " "
• ∀𝑥𝑥 𝐿𝐿 𝑥𝑥, Taro = " "
• ∃𝑥𝑥 𝐿𝐿 𝑥𝑥, Taro = " "
• ∀𝑥𝑥∀𝑦𝑦 𝐿𝐿 𝑥𝑥,𝑦𝑦 = " "
• ∃𝑥𝑥∃𝑦𝑦 𝐿𝐿 𝑥𝑥,𝑦𝑦 = " "
• ∀𝑥𝑥∃𝑦𝑦 𝐿𝐿 𝑥𝑥,𝑦𝑦 = " "
• ∃𝑥𝑥∀𝑦𝑦 𝐿𝐿 𝑥𝑥,𝑦𝑦 = " "
• ∃𝑦𝑦∀𝑥𝑥 𝐿𝐿 𝑥𝑥,𝑦𝑦 = " "
• ∀𝑥𝑥∀𝑦𝑦 𝑆𝑆 𝑥𝑥 → 𝐿𝐿 𝑥𝑥,𝑦𝑦 = " "
• ∀𝑥𝑥∀𝑦𝑦 𝑆𝑆 𝑦𝑦 → 𝐿𝐿 𝑥𝑥,𝑦𝑦 = " "
• ∀𝑥𝑥 𝑆𝑆 𝑥𝑥 → ∀𝑦𝑦 𝐿𝐿 𝑥𝑥,𝑦𝑦 = " "
• ∀𝑥𝑥 ∀𝑦𝑦 𝐿𝐿 𝑥𝑥,𝑦𝑦 → 𝑆𝑆 𝑥𝑥 = " "
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Language for Predicate Logic
• A set of symbols for predicate logic is called language.

• It is different from linguistic language.
• It is closer to vocabulary.

• A language 𝐿𝐿 of predicate logic consists of the followings:
1. Logical connectives: ∧，∨，→，￢

2. Quantifiers: ∀，∃
3. Object variables: 𝑥𝑥, 𝑦𝑦, 𝑧𝑧, . . .
4. Object constants: 𝑐𝑐,𝑑𝑑, . . .
5. Function symbols: 𝑓𝑓,𝑔𝑔, . . .
6. Predicate symbols: 𝑃𝑃,𝑄𝑄, . . .
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Terms
• A term of a language 𝐿𝐿 is defined as follows:

1. Object variables and constants of 𝐿𝐿 are terms.
2. For a function symbol 𝑓𝑓 and 𝑚𝑚 variables (arity 𝑚𝑚) in 𝐿𝐿, if 𝑡𝑡1, . . . , 𝑡𝑡𝑚𝑚

are terms, 𝑓𝑓 𝑡𝑡1, . . . , 𝑡𝑡𝑚𝑚 is also a term.

• Example: Natural Number Theory
• Object constants: 0, 1, etc.
• Function symbols: 𝑆𝑆 𝑥𝑥 , +, ×, etc.
• Predicate symbols: =, <, etc.
• Terms

• 𝑥𝑥
• 0
• 𝑆𝑆(𝑥𝑥) + (1 × 𝑆𝑆(𝑆𝑆(𝑦𝑦)))
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Logical Formulae
• Logical Formulae of 𝐿𝐿 are defined as follows:

1. For a predicate symbol 𝑃𝑃 of 𝑛𝑛 variables in 𝐿𝐿, if 𝑡𝑡1, . . . , 𝑡𝑡𝑛𝑛 are terms, 
𝑃𝑃(𝑡𝑡1, . . . , 𝑡𝑡𝑛𝑛) is a formula (atomic formula).

2. For formulae 𝐴𝐴 and 𝐵𝐵, (𝐴𝐴 ∧ 𝐵𝐵), (𝐴𝐴 ∨ 𝐵𝐵), (𝐴𝐴 → 𝐵𝐵) and (￢𝐴𝐴) are 
formulae.

3. For a formula 𝐴𝐴 and an object variable 𝑥𝑥, (∀𝑥𝑥 𝐴𝐴) and (∃𝑥𝑥 𝐴𝐴) are 
formulae.

• Example: Natural Number Theory
• ∃𝑥𝑥(𝑥𝑥 × 𝑧𝑧 = 𝑦𝑦)
• ∀𝑥𝑥∀𝑦𝑦 𝑥𝑥 + 𝑆𝑆 𝑦𝑦 = 𝑆𝑆 𝑥𝑥 + 𝑦𝑦
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Bound and Free Variables
• Bound variable

• In ∃𝑧𝑧(𝑥𝑥 × 𝑧𝑧 = 𝑦𝑦) , 𝑧𝑧 of 𝑥𝑥 × 𝑧𝑧 = 𝑦𝑦 is bound by ∃𝑧𝑧 .
• Bound variables can be renamed without changing the meaning.
• ∃𝑤𝑤(𝑥𝑥 × 𝑤𝑤 = 𝑦𝑦)

• Variables which are not bound are free variables.
• In ∃𝑧𝑧(𝑥𝑥 × 𝑧𝑧 = 𝑦𝑦) , 𝑥𝑥 and 𝑦𝑦 are free variables.

• Variables may be bound or free depending on their 
occurrence.
• ∃𝑧𝑧 𝑥𝑥 × 𝑧𝑧 = 𝑦𝑦 ∧ ∃𝑦𝑦 𝑥𝑥 + 𝑥𝑥 = 𝑦𝑦
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Closed Formulae
• When a logical formula 𝐴𝐴 does not contain free variables, 
𝐴𝐴 is called a closed logical formula.
• ∀𝑥𝑥 𝑆𝑆 𝑥𝑥 → ∀𝑦𝑦 𝐿𝐿 𝑥𝑥,𝑦𝑦

• If 𝑥𝑥1, . . . , 𝑥𝑥𝑛𝑛 are free variables of a logical formula 𝐴𝐴,
• ∀𝑥𝑥1. . .∀𝑥𝑥𝑛𝑛 𝐴𝐴
• is calles universal closure of 𝐴𝐴 .

• In mathematics, universal quantifiers are often omitted.
• Commutative law of addition 𝑥𝑥 + 𝑦𝑦 = 𝑦𝑦 + 𝑥𝑥
• Its universal closure: ∀𝑥𝑥∀𝑦𝑦(𝑥𝑥 + 𝑦𝑦 = 𝑦𝑦 + 𝑥𝑥)
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Assignment of Terms
• For a logical formula 𝐴𝐴, when all the free occurrence of 𝑥𝑥 are 

replaced with a term 𝑡𝑡, it is called an assignment of 𝑡𝑡 to 𝑥𝑥.
• 𝐴𝐴[𝑡𝑡/𝑥𝑥]

• Example
• Let 𝐴𝐴 be ∃𝑧𝑧 𝑥𝑥 × 𝑧𝑧 = 𝑦𝑦 .
• 𝐴𝐴[𝑤𝑤/𝑦𝑦] is ∃𝑧𝑧 𝑥𝑥 × 𝑧𝑧 = 𝑤𝑤 .
• 𝐴𝐴[𝑥𝑥/𝑦𝑦] is ∃𝑧𝑧 𝑥𝑥 × 𝑧𝑧 = 𝑥𝑥 .
• 𝐴𝐴[(𝑥𝑥 + 𝑤𝑤)/𝑥𝑥] is ∃𝑧𝑧 𝑥𝑥 + 𝑤𝑤 × 𝑧𝑧 = 𝑦𝑦 .

• If bound relationship is affected by an assignment, the bound 
variable must be changed before the assignment.
• 𝐴𝐴[𝑧𝑧/𝑦𝑦] is not ∃𝑧𝑧 𝑥𝑥 × 𝑧𝑧 = 𝑧𝑧 , but ∃𝑤𝑤 𝑥𝑥 × 𝑤𝑤 = 𝑧𝑧 .
• In general, (∀𝑥𝑥𝑥𝑥)[𝑡𝑡/𝑥𝑥] is ∀𝑢𝑢(𝐴𝐴[𝑢𝑢/𝑥𝑥][𝑡𝑡/𝑥𝑥]) where 𝑢𝑢 is a variable which 

does not occur in 𝐴𝐴 or 𝑡𝑡.
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Sub-formulae
• Define sub-formulae similar to propositional logic.

1. 𝐴𝐴 is a sub-formula of 𝐴𝐴.
2. 𝐴𝐴 and 𝐵𝐵 are sub-formulae of 𝐴𝐴 ∧ 𝐵𝐵 .
3. 𝐴𝐴 and 𝐵𝐵 are sub-formulae of 𝐴𝐴 ∨ 𝐵𝐵 .
4. 𝐴𝐴 and 𝐵𝐵 are sub-formulae of 𝐴𝐴 → 𝐵𝐵 .
5. 𝐴𝐴 is a sub-formula of(￢𝐴𝐴).
6. For any term 𝑡𝑡, 𝐴𝐴[𝑡𝑡/𝑥𝑥] is a sub-formula of ∀𝑥𝑥𝑥𝑥.
7. For any term 𝑡𝑡, 𝐴𝐴[𝑡𝑡/𝑥𝑥] is a sub-formula of ∃𝑥𝑥𝑥𝑥.

• When a formula contains quantifiers, there are in finitely 
many sub-formulae.
• Sub-formulae of ∀𝑥𝑥𝑥𝑥(𝑥𝑥) are: 
∀𝑥𝑥𝑥𝑥 𝑥𝑥 ,𝑄𝑄 Socrates ,𝑄𝑄(Taro),𝑄𝑄(mother(Taro)), …
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Summary
• Predicate Logic

• Limitation of propositional logic
• Description about objects

• Logical Formulae of Predicate Logic
• Language
• Term
• Logical Formulae

• Quantifiers
• Bound and free variables
• Closed formulae
• Universal closure
• Assingment
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