FUNDAMENTALS OF LOGIC NO.8 SEMANTICS OF PREDICATE LOGIC

Tatsuya Hagino hagino@sfc.keio.ac.jp

lecture URL

https://vu5.sfc.keio.ac.jp/slide/

So Far

- Propositional Logic
 - Logical connectives $(\land, \lor, \rightarrow, \lnot)$
 - Truth value table
 - Tautology
 - Normal form
 - Axiom and proof
 - LK framework and NK framework
 - Soundness and completeness
- Predicate Logic
 - Logical formula (language, term)
 - Quantifier $(\forall x \ P(x), \ \exists x \ P(x))$
 - Bound and free variables
 - Closed formula

Predicate Logic

- From propositional logic to predicate logic
 - Extend to handle properties and relations of objects
 - Object variables, constants and predicates
- Predicate Logic
 - Use predicates instead of propositional variables
 - Logical connectives: ∧, ∨, →, ¬
 - Quantifiers: $\forall x, \exists x$

Write in Predicate Logic

- Let S, B, G, H, T and L be as follows:
 - S(x) = "x is an SFC student",
 B(x) = "x is a boy",
 G(x) = "x is a girl",
 H(x) = "x is handsome",
 T(x) = "x is tall", and
 L(x,y) = "x likes y".
- Write the following statements in predicate logic:
 - 1. There are students in SFC.
 - 2. SFC students are handsome.
 - 3. SFC boy students are handsome.
 - 4. There are handsome boy SFC students.
 - 5. SFC girl students are tall.

cont.

- 6. Some SFC boy students are not tall.
- Handsome SFC students are tall.
- 8. Handsome SFC students are not necessarily tall.
- 9. SFC boy students are either tall or handsome.
- 10. Girls like tall boys.
- 11. Girls in SFC like boys who are tall and handsome.
- 12. A tall boy is liked by any girls.

Semantics of Predicate Logic

 In order to determine truth value of predicate logic formulae, the set of objects need to be selected.

Domain

A set U of objects

Interpretation

- Each constant is mapped to an element in U
- Each variable has any value in U
- Each function symbol us mapped to a function on U
- Each predicate symbol is mapped to a predicate on U

Structure

- A pair of domain U and interpretation σ
- $\langle U, \sigma \rangle$

Definition: Structure

- For a language L, its structure $\mu = \langle U, \sigma \rangle$ is defined as follow:
 - 1. U is a non empty set. (domain of μ)
 - 2. σ is a map which maps constants, function symbols and predicate symbols of L to elements, functions and predicates on U, respectively.
 - a. If c is a constant, $c^{\sigma} \in U$.
 - b. If f is an n-ary function symbol, f^{σ} is a function from U^n to U: $f^{\sigma}: U^n \to U$
 - c. If P is a predicate with n variables (except equality), P^{σ} is a predicate on U: $P^{\sigma} \subseteq U^{n}$
 - σ is called an *interpretation*.

Language L[μ]

- Language L with elements of domain U of $\mu = \langle U, \sigma \rangle$ added as constants.
- For $u \in U$, u stands for its constant of $L[\mu]$.
- $u^{\sigma} = u$

Example of Structure

- Language: L
 - constant: a, b, c
 - function: f(x)
 - predicate: S(x), P(x), L(x, y)
- Structure: $\mu = \langle U, \sigma \rangle$
 - $U = \{\text{Taro, Ichiro, Hanako, Momoko}\}$
 - constant:
 - $a^{\sigma} = \text{Trao}$
 - $b^{\sigma} = \text{Hanako}$
 - $c^{\sigma} = \text{Momoko}$
 - function:
 - $f^{\sigma}(Taro) = Ichiro$
 - $f^{\sigma}(Ichiro) = Taro$
 - $f^{\sigma}(Hanako) = Momoko$
 - $f^{\sigma}(Momoko) = Hanako$

Interpretation σ

- predicate:
 - $S^{\sigma} = \{\text{Taro, Hanako}\}$
 - $P^{\sigma} = \{\text{Hanako}\}$
 - $L^{\sigma} = \{(Taro, Hanako), (Momoko, Ichiro), (Hanako, Taro)\}$

Interpretation of Formulae

- For a structure $\mu = \langle U, \sigma \rangle$, the meaning μ of a term t of $L[\mu]$, t^{μ} , without variables is defined as follows:
 - 1. If t is a constant c, $t^{\mu} = c^{\sigma}$
 - 2. If t is $f(t_1, \dots, t_n)$, $t^{\mu} = f^{\sigma}(t_1^{\mu}, \dots, t_n^{\mu})$
- For a closed formula A of $L[\mu]$, $\mu \models A$ means A holds in a structure $\mu = \langle U, I \rangle$, and $\mu \not\models A$ means A does not hold.
 - 1. $\mu \models P(t_1, \dots, t_n) \iff (t_1^{\mu}, \dots, t_n^{\mu}) \in P^{\sigma}$ For the equality symbol, $\mu \models t_1 = t_2 \iff t_1^{\mu} = t_2^{\mu}$
 - 2. $\mu \models A \land B \iff \mu \models A \text{ and } \mu \models B$
 - 3. $\mu \vDash A \lor B \iff \mu \vDash A \text{ or } \mu \vDash B$
 - 4. $\mu \vDash A \rightarrow B \iff \mu \not\vDash A \text{ or } \mu \vDash B$
 - 5. $\mu \vDash \neg A \iff \mu \not\vDash A$
 - 6. $\mu \models \forall x \ A \iff$ for any element $u \in U$, $\mu \models A[u/x]$
 - $Z, \mu \models \exists x \ A \iff \text{there is an element } u \in U \text{ which makes } \mu \models A[u/x]$
- If A is not closed, use its closure A* and
 - $\mu \models A \iff \mu \models A^*$

Example of Interpretation

- Terms:
 - $f(a)^{\mu} = f^{\sigma}(a^{\mu}) = f^{\sigma}(a^{\sigma}) = f^{\sigma}(Taro) = Ichiro$
 - $f(f(b))^{\mu} =$
- Formulae:
 - $\mu \models S(a) \iff a^{\mu} \in S^{\sigma} \iff \text{Taro} \in \{\text{Taro}, \text{Hanako}\}$
 - $\mu \models L(a, f(c)) \iff (a^{\mu}, f(c)^{\mu}) \in L^{\sigma} \iff$
 - $\mu \models \forall x (P(x) \rightarrow S(x)) \iff$
 - $\mu \models \forall x(S(x) \rightarrow \exists y \ L(x,y)) \iff$

Valid Formulae

- A is valid \iff
 - For any structure $\mu = \langle U, I \rangle$, $\mu \models A$

Valid formulae

(where A does not contain x as a free variable, and y is a variable which does not appear in B.)

- 1. $\forall x A \equiv A$, $\exists x A \equiv A$
- 2. $\forall x B \equiv \forall y B[y/x]$, $\exists x B \equiv \exists y B[y/x]$
- 3. $A \wedge \forall x B \equiv \forall x (A \wedge B)$, $A \wedge \exists x B \equiv \exists x (A \wedge B)$
- 4. $A \lor \forall x B \equiv \forall x (A \lor B)$, $A \lor \exists x B \equiv \exists x (A \lor B)$
- 5. $\forall x \ B \land \forall x \ C \equiv \forall x (B \land C)$, $\exists x \ B \lor \exists x \ C \equiv \exists x (B \lor C)$
- 6. $\forall x \ B \lor \forall x \ C \to \forall x (B \lor C)$, $\exists x (B \land C) \to \exists x \ B \land \exists x \ C$
- 7. $\forall x \forall y \ D \equiv \forall y \forall x \ D$, $\exists x \exists y \ D \equiv \exists y \exists x \ D$
- 8. $\exists x \forall y \ D \rightarrow \forall y \exists x \ D$
- 9. $\forall x B \rightarrow \exists x B$
- 10. $\neg \forall x B \equiv \exists x \neg B$, $\neg \exists x B \equiv \forall x \neg B$
- 11. $A \to \forall x B \equiv \forall x (A \to B)$, $A \to \exists x B \equiv \exists x (A \to B)$
- 12. $\forall x B \to A \equiv \exists x (B \to A)$, $\exists x B \to A \equiv \forall x (B \to A)$
- 13. $\exists x (B \to C) \equiv \forall x B \to \exists x C$
- 14. $\forall x (B \to C) \to (\forall x B \to \forall x C)$
- 15. $\forall x (B \rightarrow C) \rightarrow (\exists x B \rightarrow \exists x C)$

- Note: Followings are not valid:
 - $\forall x (B \lor C) \rightarrow \forall x B \lor \forall x C$
 - $\exists x \ B \land \exists x \ C \rightarrow \exists x \ (B \land C)$
 - $\exists x \ B \rightarrow \forall x \ B$
 - $\forall x \exists y \ D \rightarrow \exists y \forall x \ D$

Example of Valid and not Valid Formulae

```
• S(x) = "x is a student", T(x) = "x is a teacher".
    \bigcirc \exists x (S(x) \land T(x)) \rightarrow \exists x S(x) \land \exists x T(x)
      English "
                                                                                                      "
    \times \exists x S(x) \land \exists x T(x) \rightarrow \exists x (S(x) \land T(x))
                                                                                                      11
      English "
• M(x) = "x is a boy", F(x) = "x is a girl".
    \bigcirc \forall x M(x) \lor \forall x F(x) \rightarrow \forall x (M(x) \lor F(x))
                                                                                                      "
      English "
    \times \forall x (M(x) \lor F(x)) \rightarrow \forall x M(x) \lor \forall x F(x)
                                                                                                      11
      English "
• L(x,y) = "x likes y"
    \bigcirc \exists x \forall y \ L(x,y) \rightarrow \forall y \exists x \ L(x,y)
      English "
                                                                                                      "
    \times \forall x \exists y \ L(x,y) \rightarrow \exists y \forall x \ L(x,y)
      English "
                                                                                                      11
```

Valid and Satisfiable

- Satisfiable
 - Let x_1, \dots, x_n be free variables of A, A is satisfiable \iff
 - For a structure $\mu = \langle U, I \rangle$ and elements $u_1, \dots u_n, \mu \models A[u_1/x_1, \dots u_n/x_n]$
- The necessary and sufficient condition of A not being satisfiable is $\neg A$ being valid.

Prenex Formula

- Prenex formula
 - Let Q_1, \dots, Q_n be \forall or \exists and A be a formula without quantifiers: $Q_1 x_1 \dots Q_n x_n A$

is called a *prenex formula*.

- *A* ∼ *B*
 - If $A \equiv B$ is valid, A and B are logically equivalent, and write it as $A \sim B$.
 - ~ is an equivalent relation.
- **Theorem**: For any formula A, there is a prenex formula A^+ and $A \sim A^+$.
- For a formula A, a prenex formula A^+ where $A \sim A^+$ is called its *prenex normal form*.
 - A prenex normal form may not be unique.

Examples

- Find an equivalent prenex normal form:
- 1. $(\exists y P(y) \lor Q(x)) \rightarrow \exists x R(x)$

2. $\exists x \ R(x,y) \rightarrow \forall y (P(y) \land \neg \forall z \ Q(z))$

3. $\exists x (\forall y (P(y) \rightarrow Q(x,z)) \lor \exists z (\neg \exists u R(z,u) \land Q(x,z)))$

Summary

- Semantics of predicate logic
 - domain
 - interpretation
 - structure = domain + interpretation
- $\mu \models A$
- Valid formulae
 - Satisfiable
- Prenex normal form