FUNDAMENTALS OF LOGIC NO.11 HERBRAND THEOREM

Tatsuya Hagino hagino@sfc.keio.ac.jp

lecture URL

https://vu5.sfc.keio.ac.jp/slide/

So Far

- Propositional Logic
 - Logical connectives (\land , \lor , \rightarrow , \neg)
 - Truth table
 - Tautology
 - Normal form
 - Axiom and theorem
 - LK framework
 - Soundness and completeness
- Predicate Logic
 - Logical Formulas (language, term)
 - Quantifiers $(\forall x P(x), \exists x P(x))$
 - Closed formulae (bound and free variables)
 - Semantics of predicate logic (domain, interpretation, structure)
 - Valid formulae
 - Prenex formulae
 - LK framework for predicate logic
 - Soundness and completeness

Exercise: Write in Predicate Logic

- Let *N*, *P*, *D* be the following predicates:
 - N(x) = "x is a natural number (1, 2, 3, 4, ...). "
 - P(x) = "x is a prime number"
 - D(x, y) = "x is divisible by y " = "y is a divisor of x "
 - x < y =" x is smaller than y ."
- Let *g*, *l* be the following functions:
 - g(x, y) = "the greatest common divisor of x and y"
 - l(x, y) = "the least common multiple of x and y"
- Please write the following sentences in predicate logic.
 - 1. A prime number is a natural number.
 - 2. A prime number can only be divisible by 1 and itself.
 - 3. There are infinitely many prime numbers. (i.e. Given a natural number, there is always a prime number which is bigger than the given one.)
 - 4. A prime number bigger than 2 is odd.

(cont.)

- 5. g(x, y) is a divisor of x and y.
- 6. g(x, y) is greater and any common divisor of x and y.

7. l(x, y) is a multiple of x and y.

8. l(x, y) is smaller than any multiple of x and y.

Proof in Predicate Logic

- Proof in Propositional Logic
 - There is an algorithm to determine whether a give formula is provable or not.
 - The algorithm is a finite method.
- Proof in Predicate Logic
 - There is no algorithm to determine whether a given formula is provable or not.
- Partial Algorithm
 - If a give formula is provable, the partial algorithm can show it.
 - If it is not provable, the algorithm may not show anything.
 - The algorithm may not terminate (i.e. not finite method).

Skolemization

- Prenex Normal Form
 - Any logical formula can be transformed to a formula of the form $Q_1 x_1 \cdots Q_n x_n A$.
 - Q_i is either \forall or \exists .
 - A does not contain any quantifiers.
- ∀ themselves or ∃ themselves can be exchanged without meaning, but \forall and \exists cannot be exchanged in general.
 - $\forall x \exists y A \not\equiv \exists y \forall x A$
- Skolemization
 - $\forall x_1 \cdots \forall x_n \exists y A$
 - y is determined by x_1, \ldots, x_n .
 - Write the relation as a new function f (Skolem function)
 - $\forall x_1 \cdots \forall x_n A[f(x_1, \dots, x_n)/y]$
- **Theorem**: The satisfiability of $\forall x_1 \cdots \forall x_n \exists y A$ and $\forall x_1 \cdots \forall x_n A[f(x_1, \dots, x_n)/y]$ is the same.
 - Note: $\forall x_1 \cdots \forall x_n \exists y A \neq \forall x_1 \cdots \forall x_n A[f(x_1, \dots, x_n)/y]$

$$\forall x_1 \cdots \forall x_n \exists y A$$

For x_1 to x_n , there exists y

Example of Skolemization

- Let L(x, y) = "x likes y" and S(x) = "x is an SFC student".
 Skolemize the following formulae:
- 1. $\forall x \exists y L(x, y)$

2. $\exists x \forall y L(x, y)$

3. $\exists x \exists y L(x, y)$

4. $\forall x (\forall y \ L(x, y) \rightarrow S(x))$

Universal Prenex Normal Form

- By repeating Skolemization, a formula is transformed into a Prenex normal form with only universal quantifiers.
 - $\forall x_1 \cdots \forall x_n A$
 - A does not contain any quantifiers.
 - The satisfiability is the same as the original formula.
 - Called universal prenex normal form
- Furthermore, A can be converted into a conjunctive normal form.

•
$$\forall x_1 \cdots \forall x_n \left(\left(L_{11} \lor \cdots \lor L_{1k_1} \right) \land \cdots \land \left(L_{m1} \lor \cdots \lor L_{mk_m} \right) \right)$$

- where L_{ij} is a literal (i.e. predicate or its negation)
- From duality, any formula can be transformed into the following form:

•
$$\exists x_1 \cdots \exists x_n \left(\left(L_{11} \land \cdots \land L_{1k_1} \right) \lor \cdots \lor \left(L_{m1} \land \cdots \land L_{mk_m} \right) \right)$$

Clause

Clause

- Disjunction of literals (predicate or its negation)
- $L_1 \vee \cdots \vee L_n$
- L_i is a predicate P or $\neg P$
- Converting a logical formula to clauses:
 - 1. Convert to prenex normal form
 - 2. Skolemize to replace existential quantifiers with functions
 - 3. Convert to conjunctive normal form
 - 4. Divide conjunctions
- The satisfiability of the original logical formula is equivalent to the satisfiability of the converted clauses.

Example

• Convert $\forall x (\forall y (P(x, y) \lor Q(y)) \rightarrow R(x))$ to an equivalent set of clauses:

Herbrand Interpretation

- Herbrand universe H_L of language L
 - The set of terms of *L* which do not contain any variables.
 - In case *L* does not contain any constants, H_L is empty. To avoid this, add a constant to *L* before constructing H_L .
- Formal definition of *Herbrand universe*
 - $H_0 = \{c \mid c \text{ is a constant of } L\}$
 - $H_{k+1} = H_k \cup \{f(t_1, \dots, t_n) \mid f \text{ is an } n \text{ ary function in } L, t_1, \dots, t_n \in H_k\}$

•
$$H_L = H_\infty$$

Herbrand basis

- Atomic formulae with Herbrand Universe elements.
- $\{P(t_1, ..., t_n) \mid P \text{ is an } n \text{ ary predicate in } L, t_1, ..., t_n \in H_L\}$
- Herbrand interpretation
 - A subset of Herbrand basis J
 - Atomic formulae in *J* are regarded as valid.

Herbrand Theorem

• Herbrand structure: $\mu = \langle H_L, J \rangle$

- For each constant c: $c^J = c$
- For each function symbol $f: f^J(t_1, ..., t_n) = f(t_1, ..., t_n)$
- For each predicate symbol $P: \mu \models P(t_1, \dots, t_n) \iff (t_1, \dots, t_n) \in J$

Herbrand Theorem

- For a universal prenex normal form $\forall x_1 \cdots \forall x_n A$
 - A does not contain any quantifiers.
- The followings are equivalent:
 - $\forall x_1 \cdots \forall x_n A$ is unsatisfiable.
 - There exists a natural number m and H_L terms $t_{i1}, ..., t_{in}$ (i = 1, ..., m),

$$A[t_{11}/x_1,\ldots,t_{1n}/x_n] \wedge \cdots \wedge A[t_{m1}/x_1,\ldots,t_{mn}/x_n]$$

is unsatisfiable in any Herbrand structure $\langle H_L, J \rangle$.

Meaning of Herbrand Structure

- Herbrand Structure
 - Do not interpret the meaning of constants or function symbols, but treat them as symbols.
 - Give interpretation of predicate symbols only.
- Property
 - The interpretation of constants and function symbols are left to the interpretation of predicates.
 - For any interpretation (including interpreting constants and function symbols), we can create an interpretation in Herbrand structure.
 - In order to check the satisfiability of a logical formula, the structures can be restricted to Herbrand structures.

Applying Herbrand Theorem

- Show that $\forall x \exists y (P(x) \land \neg P(y))$ is unsatisfiable using Herbrand theorem:
 - 1. Convert to universal prenex normal form: $\forall x (P(x) \land \neg P(f(x)))$
 - 2. Herbrand universe: $H = \{c, f(c), f(f(c)), f(f(c))\}, ...\}$
 - 3. First, $P(x) \wedge \neg P(f(x))$ with assignment of x to c is $P(c) \wedge \neg P(f(c))$, and it is satisfiable.
 - 4. Next, combine the above formula with $P(x) \land \neg P(f(x))$ with assignment of x to f(c).

$$(P(c) \land \neg P(f(c))) \land (P(f(c)) \land \neg P(f(c))))$$

There is no Herbrand interpretation which make both $\neg P(f(c))$ and P(f(c)) valid. Therefore, it is unsatisfiable.

- 5. Using Herbrand theorem, $\forall x \exists y (P(x) \land \neg P(y))$ is unsatisfiable.
- Therefore the negation of the formula is valid.
 - $\neg \forall x \exists y (P(x) \land \neg P(y))$ is valid, i.e.
 - $\exists x \forall y (P(x) \rightarrow P(y))$ is valid.

Herbrand Theorem for Clauses

Ground Instance

- A formula or clause without variables.
- Herbrand Theorem for Clauses
 - Let *S* be a set of clauses, the followings are equivalent:
 - S is unsatisfiable.
 - There is a finite set of ground instances of *S* which is unsatisfiable.
- A partial algorithm of showing *A* is valid:
 - 1. Convert $\neg A$ to a set of clauses *S*.
 - 2. Assign elements of H_0 (constants) and get ground instances S_0 and check its unsatisfiability (S_0 is a finite set).
 - 3. Assign elements of H_1 and get ground instances S_1 and check its unsatisfiability.
 - 4. Assign elements of H_2 and get ground instances S_2 and check its unsatisfiability.
 - 5. ...
 - 6. Repeat until finding H_k of which ground instances S_k is unsatisfiable.

Dual Form of Herbrand Theorem

- Since the validity of A and the satisfiability of $\neg A$ is equivalent, there is a dual form of Herbrand Theorem.
- Herbrand Theorem (dual form)
 - If $\exists x_1 \cdots \exists x_n A$ is an existential prenex normal form,
 - A does not contain any quantifiers.
 - The followings are equivalent:
 - $\exists x_1 \cdots \exists x_n A$ is valid.
 - There exists a natural number m and H_L terms t_{i1}, \dots, t_{in} $(i = 1, \dots, m)$, and

$$A[t_{11}/x_1,...,t_{1n}/x_n] \vee \cdots \vee A[t_{m1}/x_1,...,t_{mn}/x_n]$$

is valid in any Herbrand structure $\langle H_L, J \rangle$.

Summary

Proof

- Propositional logic has an algorithm of proving formulae, but
- Predicate logic does not have.
- Skolemization
 - Universal prenex normal form
 - Conversion to clauses
- Herbrand Theorem
 - Herbrand universe, interpretation and structure
 - There is an partial algorithm for showing universal prenex normal form is unsatisfiable or not.