FUNDAMENTALS OF LOGIC NO. 11 HERBRAND THEOREM

Tatsuya Hagino
hagino@sfc.keio.ac.jp
lecture URL
https://vu5.sfc.keio.ac.jp/slide/

So Far

- Propositional Logic
- Logical connectives ($\wedge, \vee, \rightarrow, \neg)$
- Truth table
- Tautology
- Normal form
- Axiom and theorem
- LK framework
- Soundness and completeness
- Predicate Logic
- Logical Formulas (language, term)
- Quantifiers ($\forall x P(x), \exists x P(x))$
- Closed formulae (bound and free variables)
- Semantics of predicate logic (domain, interpretation, structure)
- Valid formulae
- Prenex formulae
- LK framework for predicate logic
- Soundness and completeness

Exercise: Write in Predicate Logic

- Let N, P, D be the following predicates:
- $N(x)=$ " x is a natural number $(1,2,3,4, \ldots)$. "
- $P(x)=$ " x is a prime number"
- $D(x, y)=$ " x is divisible by y " $=" y$ is a divisor of x "
- $x<y=$ " x is smaller than y."
- Let g, l be the following functions:
- $g(x, y)=$ "the greatest common divisor of x and y "
- $l(x, y)=$ "the least common multiple of x and y "
- Please write the following sentences in predicate logic.

1. A prime number is a natural number.
2. A prime number can only be divisible by 1 and itself.
3. There are infinitely many prime numbers. (i.e. Given a natural number, there is always a prime number which is bigger than the given one.)
4. A prime number bigger than 2 is odd.

(cont.)

5. $g(x, y)$ is a divisor of x and y.
6. $g(x, y)$ is greater and any common divisor of x and y.
7. $\quad l(x, y)$ is a multiple of x and y.
8. $\quad l(x, y)$ is smaller than any multiple of x and y.

Proof in Predicate Logic

- Proof in Propositional Logic
- There is an algorithm to determine whether a give formula is provable or not.
- The algorithm is a finite method.
- Proof in Predicate Logic
- There is no algorithm to determine whether a given formula is provable or not.
- Partial Algorithm
- If a give formula is provable, the partial algorithm can show it.
- If it is not provable, the algorithm may not show anything.
- The algorithm may not terminate (i.e. not finite method).

Skolemization

- Prenex Normal Form

- Any logical formula can be transformed to a formula of the form $Q_{1} x_{1} \cdots Q_{n} x_{n} A$.
- Q_{i} is either \forall or \exists.
- A does not contain any quantifiers.
- \forall themselves or \exists themselves can be exchanged without changing the meaning, but \forall and \exists cannot be exchanged in general.
- $\forall x \exists y A \not \equiv \exists y \forall x A$
- Skolemization
- $\forall x_{1} \cdots \forall x_{n} \exists y A$
- y is determined by x_{1}, \ldots, x_{n}.
- Write the relation as a new function f (Skolem function)
- $\forall x_{1} \cdots \forall x_{n} A\left[f\left(x_{1}, \ldots, x_{n}\right) / y\right]$
- Theorem: The satisfiability of $\forall x_{1} \cdots \forall x_{n} \exists y A$ and $\forall x_{1} \cdots \forall x_{n} A\left[f\left(x_{1}, \ldots, x_{n}\right) / y\right]$ is the same.
- Note: $\forall x_{1} \cdots \forall x_{n} \exists y A \not \equiv \forall x_{1} \cdots \forall x_{n} A\left[f\left(x_{1}, \ldots, x_{n}\right) / y\right]$

Example of Skolemization

- Let $L(x, y)=" x$ likes y " and $S(x)=" x$ is an SFC student". Skolemize the following formulae:

1. $\forall x \exists y L(x, y)$
2. $\exists x \forall y L(x, y)$
3. $\exists x \exists y L(x, y)$
4. $\forall x(\forall y L(x, y) \rightarrow S(x))$

Universal Prenex Normal Form

- By repeating Skolemization, a formula is transformed into a Prenex normal form with only universal quantifiers.
- $\forall x_{1} \cdots \forall x_{n} A$
- A does not contain any quantifiers.
- The satisfiability is the same as the original formula.
- Called universal prenex normal form
- Furthermore, A can be converted into a conjunctive normal form.
- $\forall x_{1} \cdots \forall x_{n}\left(\left(L_{11} \vee \cdots \vee L_{1 k_{1}}\right) \wedge \cdots \wedge\left(L_{m 1} \vee \cdots \vee L_{m k_{m}}\right)\right)$
- where $L_{i j}$ is a literal (i.e. predicate or its negation)
- From duality, any formula can be transformed into the following form:

$$
\cdot \exists x_{1} \cdots \exists x_{n}\left(\left(L_{11} \wedge \cdots \wedge L_{1 k_{1}}\right) \vee \cdots \vee\left(L_{m 1} \wedge \cdots \wedge L_{m k_{m}}\right)\right)
$$

Clause

- Clause
- Disjunction of literals (predicate or its negation)
- $L_{1} \vee \cdots \vee L_{n}$
- L_{i} is a predicate P or $\neg P$
- Converting a logical formula to clauses:

1. Convert to prenex normal form
2. Skolemize to replace existential quantifiers with functions
3. Convert to conjunctive normal form
4. Divide conjunctions

- The satisfiability of the original logical formula is equivalent to the satisfiability of the converted clauses.

Example

- Convert $\forall x(\forall y(P(x, y) \vee Q(y)) \rightarrow R(x))$ to an equivalent set of clauses:

Herbrand Interpretation

- Herbrand universe H_{L} of language L
- The set of terms of L which do not contain any variables.
- In case L does not contain any constants, H_{L} is empty. To avoid this, add a constant to L before constructing H_{L}.
- Formal definition of Herbrand universe
- $H_{0}=\{c \mid c$ is a constant of $L\}$
- $H_{k+1}=H_{k} \cup\left\{f\left(t_{1}, \ldots, t_{n}\right) \mid f\right.$ is an n ary function in $\left.L, t_{1}, \ldots, t_{n} \in H_{k}\right\}$
- $H_{L}=H_{\infty}$
- Herbrand basis
- Atomic formulae with Herbrand Universe elements.
- $\left\{P\left(t_{1}, \ldots, t_{n}\right) \mid P\right.$ is an n ary predicate in $\left.L, t_{1}, \ldots, t_{n} \in H_{L}\right\}$
- Herbrand interpretation
- A subset of Herbrand basis J
- Atomic formulae in J are regarded as valid.

Herbrand Theorem

- Herbrand structure: $\mu=\left\langle H_{L}, J\right\rangle$
- For each constant $c: c^{J}=c$
- For each function symbol $f: f^{J}\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right)$
- For each predicate symbol $P: \mu \vDash P\left(t_{1}, \cdots, t_{n}\right) \Longleftrightarrow\left(t_{1}, \ldots, t_{n}\right) \in J$

- Herbrand Theorem

- For a universal prenex normal form $\forall x_{1} \cdots \forall x_{n} A$
- A does not contain any quantifiers.
- The followings are equivalent:
- $\forall x_{1} \cdots \forall x_{n} A$ is unsatisfiable.
- There exists a natural number m and H_{L} terms $t_{i 1}, \ldots, t_{i n}(i=1, \ldots, m)$,

$$
A\left[t_{11} / x_{1}, \ldots, t_{1 n} / x_{n}\right] \wedge \cdots \wedge A\left[t_{m 1} / x_{1}, \ldots, t_{m n} / x_{n}\right]
$$

is unsatisfiable in any Herbrand structure $\left\langle H_{L}, J\right\rangle$.

Meaning of Herbrand Structure

- Herbrand Structure
- Do not interpret the meaning of constants or function symbols, but treat them as symbols.
- Give interpretation of predicate symbols only.
- Property
- The interpretation of constants and function symbols are left to the interpretation of predicates.
- For any interpretation (including interpreting constants and function symbols), we can create an interpretation in Herbrand structure.
- In order to check the satisfiability of a logical formula, the structures can be restricted to Herbrand structures.

Applying Herbrand Theorem

- Show that $\forall x \exists y(P(x) \wedge \neg P(y))$ is unsatisfiable using Herbrand theorem:

1. Convert to universal prenex normal form: $\forall x(P(x) \wedge \neg P(f(x)))$
2. Herbrand universe: $H=\{c, f(c), f(f(c)), f(f(f(c))), \ldots\}$
3. First, $P(x) \wedge \neg P(f(x))$ with assignment of x to c is $P(c) \wedge \neg P(f(c))$, and it is satisfiable.
4. Next, combine the above formula with $P(x) \wedge \neg P(f(x))$ with assignment of x to $f(c)$.

$$
(P(c) \wedge \neg P(f(c))) \wedge(P(f(c)) \wedge \neg P(f(f(c))))
$$

There is no Herbrand interpretation which make both $\neg P(f(c))$ and $P(f(c))$ valid. Therefore, it is unsatisfiable.
5. Using Herbrand theorem, $\forall x \exists y(P(x) \wedge \neg P(y))$ is unsatisfiable.

- Therefore the negation of the formula is valid.
- $\neg \forall x \exists y(P(x) \wedge \neg P(y))$ is valid, i.e.
- $\exists x \forall y(P(x) \rightarrow P(y))$ is valid.

Herbrand Theorem for Clauses

- Ground Instance
- A formula or clause without variables.
- Herbrand Theorem for Clauses
- Let S be a set of clauses, the followings are equivalent:
- S is unsatisfiable.
- There is a finite set of ground instances of S which is unsatisfiable.
- A partial algorithm of showing A is valid:

1. Convert $\neg A$ to a set of clauses S.
2. Assign elements of H_{0} (constants) and get ground instances S_{0} and check its unsatisfiability (S_{0} is a finite set).
3. Assign elements of H_{1} and get ground instances S_{1} and check its unsatisfiability.
4. Assign elements of H_{2} and get ground instances S_{2} and check its unsatisfiability.
5. ...
6. Repeat until finding H_{k} of which ground instances S_{k} is unsatisfiable.

Dual Form of Herbrand Theorem

- Since the validity of A and the satisfiability of $\neg A$ is equivalent, there is a dual form of Herbrand Theorem.
- Herbrand Theorem (dual form)
- If $\exists x_{1} \cdots \exists x_{n} A$ is an existential prenex normal form,
- A does not contain any quantifiers.
- The followings are equivalent:
- $\exists x_{1} \cdots \exists x_{n} A$ is valid.
- There exists a natural number m and H_{L} terms $t_{i 1}, \ldots, t_{i n}(i=1, \ldots, m)$, and

$$
A\left[t_{11} / x_{1}, \ldots, t_{1 n} / x_{n}\right] \vee \cdots \vee A\left[t_{m 1} / x_{1}, \ldots, t_{m n} / x_{n}\right]
$$

is valid in any Herbrand structure $\left\langle H_{L}, J\right\rangle$.

Summary

- Proof
- Propositional logic has an algorithm of proving formulae, but
- Predicate logic does not have.
- Skolemization
- Universal prenex normal form
- Conversion to clauses
- Herbrand Theorem
- Herbrand universe, interpretation and structure
- There is an partial algorithm for showing universal prenex normal form is unsatisfiable or not.

