# FUNDAMENTALS OF LOGIC NO. 12 RESOLUTION PRINCIPLE 

Tatsuya Hagino
hagino@sfc.keio.ac.jp
lecture URL
https://vu5.sfc.keio.ac.jp/slide/

## So Far

- Propositional Logic
- Logical connectives ( $\wedge, \vee, \rightarrow, \neg)$
- Truth table
- Tautology
- Normal form
- Axiom and theorem
- LK framework
- Soundness and completeness
- Predicate Logic
- Logical Formulas (language, term)
- Quantifiers ( $\forall x P(x), \exists x P(x))$
- Closed formulae (bound and free variables)
- Semantics of predicate logic (domain, interpretation, structure)
- Valid formulae
- Prenex formulae
- LK framework for predicate logic
- Soundness and completeness
- Skolemization
- Herbrand Theorem


## Skolemization and Herbrand Theorem

- Skolemization
- The followings are equivalent:
- $\forall x_{1} \cdots \forall x_{n} \exists y A$ is satisfiable.
- $\forall x_{1} \cdots \forall x_{n} A\left[f\left(x_{1}, \ldots, x_{n}\right) / y\right]$ is satisfiable.
- To check the satisfiability of a formula, it can be transformed into $\forall x_{1} \cdots \forall x_{n} A$ (where $A$ does not contain any quantifiers) and check its satisfiability.


## - Herbrand Theorem

- Let $\forall x_{1} \cdots \forall x_{n} A$ be a universal prenex normal form in language $L(A$ does not contain any quantifiers). The followings are equivalent:
- $\forall x_{1} \cdots \forall x_{n} A$ is unsatisfiable.
- There exists a natural number $m$ and $H_{L}$ terms $t_{i 1}, \ldots, t_{i n}(i=1, \ldots, m)$,

$$
A\left[t_{11} / x_{1}, \ldots, t_{1 n} / x_{n}\right] \wedge \cdots \wedge A\left[t_{m 1} / x_{1}, \ldots, t_{m n} / x_{n}\right]
$$

is unsatisfiable in any Herbrand structure $\left\langle H_{L}, J\right\rangle$.

## Resolution Principle for Propositional Logic

- Complementary Literal
- For literals $L$ and $L^{\prime}, L$ and $L^{\prime}$ are complementary if $L^{\prime}=\neg L$ or $L=\neg L^{\prime}$.
- Resolvent
- For clauses $L_{1} \vee \cdots \vee L_{n}$ and $L_{1}^{\prime} \vee \cdots \vee L^{\prime}{ }_{m}$, when $L_{i}$ and $L_{j}^{\prime}$ are complementary, the clause connecting the two and removing the complementary ones is called its resolvent.

$$
L_{1} \vee \cdots \vee L_{i-1} \vee L_{i+1} \vee \cdots \vee L_{n} \vee L_{1}^{\prime} \vee \cdots \vee L_{j-1}^{\prime} \vee L_{j+1}^{\prime} \vee \cdots \vee L_{m}^{\prime}
$$

- Example:
- Resolvent of $p \vee \neg q \vee r$ and $\neg p \vee q$
- $\neg q$ and $q$ are complementary $\Rightarrow p \vee r \vee \neg p$
- $p$ and $\neg p$ are complementary $\Rightarrow \neg q \vee r \vee q$
- Given a set of clauses, repeatedly adding a resolvent of clauses and putting it back to the set is called resolution principle.


## Exercises: Resolvent

1. Resolvent of $p \vee \neg q$ and $\neg p \vee r$
2. Resolvent of $p \vee \neg p \vee q$ and $p \vee \neg q \vee r$
3. Resolvent of $p \vee \neg q$ and $\neg p \vee q$
4. Resolvent of $p \vee \neg q$ and $\neg p$
5. Resolvent of $p$ and $\neg p$

## Resolution Proof Tree

- $\{p \vee \neg q \vee r, \neg p, q \vee r \vee s, r \vee \neg s \vee t\}$



## Exercise: Resolution Proof Tree

- $\{p \vee \neg q \vee r, \neg r, q \vee \neg r, \neg p \vee r, q \vee r\}$


## Theorem about Resolution Principle

- Let $C$ be a resolvent of $C_{1}$ and $C_{2}$.
- If an assignment $v$ makes both $C_{1}$ and $C_{2}$ true, it also makes $C$ true.
- If $v(p \vee A)=T$ and $v(\neg p \vee B)=T$, then $v(A \vee B)=T$.
- Theorem: If a set of clauses $S$ is satisfiable, $S$ with its resolvent is also satisfiable.
- Empty Clause
- A clause without literals.
- Use $\quad$ to represent the empty clause.
- It means false or contradiction.
- Theorem: For a set of clauses $S$, if there is a resolution proof tree which contains $\square, S$ is unsatisfiable.
- In order to show $A$ is a tautology, convert $\neg A$ to clauses and find a resolution proof tree of $\square$.


## Predicate Logic

- $P(c)$ and $\neg P(z)$ are not complementary (where $c$ is a constant and $z$ is a variable).
- Replace $z$ with $c$ (i.e. assigning $c$ to $z$ )
- $P(c)$ and $\neg P(c)$ are complementary.
- $P(x, f(y))$ and $\neg P(z, z)$ are not complementary
- Let $\theta=[f(y) / x]$ and $\mu=[f(y) / z]$ be two assignments.
- $P(x, f(y)) \theta=P(z, z) \mu$
- From Herbrand theorem,
- In order to show the unsatisfiability of a set of clauses $C$, it is enough to show that their ground clauses are unsatisfiable.
- Apply resolution principle to ground clauses.


## Unification

- Atomic formulae $P\left(t_{1}, \ldots, t_{n}\right)$ and $Q\left(s_{1}, \ldots, s_{m}\right)$ are unifiable when
- $P$ and $Q$ are the same predicate symbol,
- $n$ and $m$ are equal, and
- an assignment $\theta$ makes $t_{1} \theta=s_{1} \theta, \ldots, t_{n} \theta=s_{n} \theta$.
$\theta$ is called unifier.
- Most General Unifier (mgu)
- $\theta$ is a unifier, and
- for any unifier $\mu$, there is a $\theta^{\prime}$ and $\mu=\theta^{\prime} \circ \theta$.
- Calculate mgu: compare two terms $t$ and $t^{\prime}$ from left to right, and find unequal point.
- If the unequal point is not variable, there is no unifier.
- If the unequal point is a variable $x$ and a term $s$,
- if $x$ appears inside $s$, there is no unifier.
- otherwise, let $\theta=[s / x]$ and find an mgu $\theta^{\prime}$ of $t \theta$ and $t^{\prime} \theta$, then $\theta^{\prime} \circ \theta$ is an mgu of $t$ and $t^{\prime}$.


## Example of Unification

- Calsulate an mgu of $P(x, f(y))$ and $P(g(z, z), z)$.
- The first unequal point is $x$ and $g(z, z)$. Let $\theta=[g(z, z) / x]$.
- Applying $\theta$ gives $P(g(z, z), f(y))$ and $P(g(z, z), z)$.
- The next unequal point is $f(y)$ and $z$. Let $\theta^{\prime}=[f(y) / z]$.
- $\theta^{\prime}$ makes both formulae $P(g(f(y), f(y)), g(f(y)))$.
- Therefore, the mgu is $\theta^{\prime}$ 。 $\theta=[g(f(y), f(y)) / x, f(y) / z]$.



## Example of MGU

1. Find an mgu of $P(x)$ and $P(f(c))$ where $c$ is a constant.
2. Find an mgu of $P(x, y)$ and $P(z, z)$.
3. Find an mgu of $P(x, c)$ と $P(z, z)$ where $c$ is a constant.
4. Find an mgu of $P(g(x), f(y))$ and $P(z, f(g(z)))$.

## Example of Resolution Principle (1)

- Prove Socrates problem.
- $P(x)=" x$ is a man."
- $Q(x)=$ " $x$ is mortal."
- Let $s$ be an object constant for Socrates.
- $P(s) \wedge \forall x(P(x) \rightarrow Q(x)) \rightarrow Q(s)$


## Example of Resolution Principle (2)

- Show the following formula is valid.
- $\forall x R(x, x) \wedge \forall x \forall y \forall z((R(x, y) \wedge R(z, y)) \rightarrow R(x, z)) \rightarrow$ $\forall x \forall y \forall z((R(x, y) \wedge R(y, z)) \rightarrow R(x, z))$


## Example of Resolution Principle (3)

- Show the following formula is valid.

$$
\begin{gathered}
\forall x \forall y(R(x, y) \rightarrow R(y, x)) \\
\wedge \forall x \forall y \forall z(R(x, y) \wedge R(y, z) \rightarrow R(x, z)) \\
\wedge \forall x \exists y R(x, y) \\
\rightarrow \forall z R(z, z)
\end{gathered}
$$

## Linear Resolution

- In general, the resolution allows any order of combinations of clauses to get the empty clause.
- Linear Resolution
- A set of clauses: $S$
- A linear resolution: $C_{0}, C_{1}, \ldots, C_{n}$
- $C_{0} \in S, C_{n}=\square$
- $C_{k+1}$ is a resolvent of $C_{k}$ and a clause of $S$ or $C_{j}(j \leq k)$.
- Example: $S=\{p \vee \neg q \vee r, \neg r, q \vee \neg r, \neg p \vee r, q \vee r\}$
- Find a linear resolution of $p \vee \neg q \vee r$.

$$
p \vee \neg q \vee r
$$



## Logic Programming

- Logic Programming
- Restrict to Horn clauses.
- Starting from goal clause and using linear resolution to deduce the empty clause.
- Horn Clause
- A clause $L_{1} \vee \cdots \vee L_{m}$ where at most one literal is an atomic formula (others are negation of atomic formulae).
- Program Clause: a clause where one literal is an atomic formula.
- $A \vee \neg B_{1} \vee \cdots \vee \neg B_{n}$
- $A \leftarrow B_{1}, \ldots, B_{n}$
- Goal Clause: a clause where all the literals are negation of atomic formulae.

$$
\begin{aligned}
& \text { - } \neg B_{1} \vee \cdots \vee \neg B_{n} \\
& \cdot
\end{aligned} \leftarrow B_{1}, \ldots, B_{n}
$$

## SWI-Prolog

- You may use SWI-Prolog on ccx01.
- The command is `pl'.
- or, you may download SWI-Prolog to your machine.

```
% pl
Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 5.10.5)
Copyright (c) 1990-2015 University of Amsterdam, VU Amsterdam
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.
For help, use ?- help(Topic). or ?- apropos(Word).
1 ?- ['user'].
human(socrates).
|: mortal(X):-human(X).
|:
% user://1 compiled 0.00 sec, 1,976 bytes
true.
2 ?- mortal(socrates).
true.
3 ?- halt.
%
```


## Summary

- Resolution Principle
- resolvent of two clauses
- a resolution proof tree with empty clause
- Unification
- Unify two predicates by assigning terms to variables
- mgu: most general unifier
- Logic Programming
- Horn clause
- Linear resolution

