FUNDAMENTALS OF LOGIC NO.12 RESOLUTION PRINCIPLE

Tatsuya Hagino hagino@sfc.keio.ac.jp

lecture URL

https://vu5.sfc.keio.ac.jp/slide/

So Far

- Propositional Logic
 - Logical connectives (\land , \lor , \rightarrow , \neg)
 - Truth table
 - Tautology
 - Normal form
 - Axiom and theorem
 - LK framework
 - Soundness and completeness
- Predicate Logic
 - Logical Formulas (language, term)
 - Quantifiers $(\forall x P(x), \exists x P(x))$
 - Closed formulae (bound and free variables)
 - Semantics of predicate logic (domain, interpretation, structure)
 - Valid formulae
 - Prenex formulae
 - LK framework for predicate logic
 - Soundness and completeness
 - Skolemization
 - Herbrand Theorem

Skolemization and Herbrand Theorem

Skolemization

- The followings are equivalent:
 - $\forall x_1 \cdots \forall x_n \exists y A$ is satisfiable.
 - $\forall x_1 \cdots \forall x_n A[f(x_1, \dots, x_n)/y]$ is satisfiable.
- To check the satisfiability of a formula, it can be transformed into ∀x₁ … ∀x_n A (where A does not contain any quantifiers) and check its satisfiability.

• Herbrand Theorem

- Let $\forall x_1 \cdots \forall x_n A$ be a universal prenex normal form in language *L* (*A* does not contain any quantifiers). The followings are equivalent:
 - $\forall x_1 \cdots \forall x_n A$ is unsatisfiable.
 - There exists a natural number m and H_L terms t_{i1}, \dots, t_{in} $(i = 1, \dots, m)$,

$$A[t_{11}/x_1,\ldots,t_{1n}/x_n] \wedge \cdots \wedge A[t_{m1}/x_1,\ldots,t_{mn}/x_n]$$

is unsatisfiable in any Herbrand structure $\langle H_L, J \rangle$.

Resolution Principle for Propositional Logic

- Complementary Literal
 - For literals L and L', L and L' are complementary if $L' = \neg L$ or $L = \neg L'$.
- Resolvent
 - For clauses $L_1 \vee \cdots \vee L_n$ and $L'_1 \vee \cdots \vee L'_m$, when L_i and L'_j are complementary, the clause connecting the two and removing the complementary ones is called its *resolvent*.

$$L_1 \vee \cdots \vee L_{i-1} \vee L_{i+1} \vee \cdots \vee L_n \vee L'_1 \vee \cdots \vee L'_{j-1} \vee L'_{j+1} \vee \cdots \vee L'_m$$

- Example:
 - Resolvent of $p \lor \neg q \lor r$ and $\neg p \lor q$
 - $\neg q$ and q are complementary $\Rightarrow p \lor r \lor \neg p$
 - p and $\neg p$ are complementary $\Rightarrow \neg q \lor r \lor q$
- Given a set of clauses, repeatedly adding a resolvent of clauses and putting it back to the set is called *resolution principle*.

Exercises: Resolvent

1. Resolvent of $p \lor \neg q$ and $\neg p \lor r$

2. Resolvent of $p \lor \neg p \lor q$ and $p \lor \neg q \lor r$

3. Resolvent of $p \lor \neg q$ and $\neg p \lor q$

4. Resolvent of $p \lor \neg q$ and $\neg p$

5. Resolvent of p and $\neg p$

Resolution Proof Tree

• {
$$p \lor \neg q \lor r$$
, $\neg p$, $q \lor r \lor s$, $r \lor \neg s \lor t$ }

Exercise: Resolution Proof Tree

• $\{p \lor \neg q \lor r, \neg r, q \lor \neg r, \neg p \lor r, q \lor r\}$

Theorem about Resolution Principle

- Let C be a resolvent of C_1 and C_2 .
 - If an assignment v makes both C_1 and C_2 true, it also makes C true.
 - If $v(p \lor A) = T$ and $v(\neg p \lor B) = T$, then $v(A \lor B) = T$.
- **Theorem**: If a set of clauses S is satisfiable, S with its resolvent is also satisfiable.

• Empty Clause

- A clause without literals.
- Use □ to represent the empty clause.
- It means false or contradiction.
- **Theorem**: For a set of clauses *S*, if there is a resolution proof tree which contains □, *S* is unsatisfiable.
 - In order to show A is a tautology, convert ¬A to clauses and find a resolution proof tree of □.

Predicate Logic

- P(c) and $\neg P(z)$ are not complementary (where c is a constant and z is a variable).
 - Replace *z* with *c* (i.e. assigning *c* to *z*)
 - P(c) and $\neg P(c)$ are complementary.
- P(x, f(y)) and $\neg P(z, z)$ are not complementary
 - Let $\theta = [f(y)/x]$ and $\mu = [f(y)/z]$ be two assignments.
 - $P(x, f(y))\theta = P(z, z)\mu$
- From Herbrand theorem,
 - In order to show the unsatisfiability of a set of clauses *C*, it is enough to show that their ground clauses are unsatisfiable.
 - Apply resolution principle to ground clauses.

Unification

- Atomic formulae $P(t_1, ..., t_n)$ and $Q(s_1, ..., s_m)$ are *unifiable* when
 - *P* and *Q* are the same predicate symbol,
 - n and m are equal, and
 - an assignment θ makes $t_1\theta = s_1\theta, \dots, t_n\theta = s_n\theta$.

 θ is called *unifier*.

- Most General Unifier (mgu)
 - θ is a unifier, and
 - for any unifier μ , there is a θ' and $\mu = \theta' \circ \theta$.
- Calculate mgu: compare two terms t and t' from left to right, and find unequal point.
 - If the unequal point is not variable, there is no unifier.
 - If the unequal point is a variable x and a term s,
 - if *x* appears inside *s*, there is no unifier.
 - otherwise, let $\theta = [s/x]$ and find an mgu θ' of $t\theta$ and $t'\theta$, then $\theta' \circ \theta$ is an mgu of t and t'.

Example of Unification

- Calsulate an mgu of P(x, f(y)) and P(g(z, z), z).
 - The first unequal point is x and g(z, z). Let $\theta = [g(z, z)/x]$.
 - Applying θ gives P(g(z, z), f(y)) and P(g(z, z), z).
 - The next unequal point is f(y) and z. Let $\theta' = [f(y)/z]$.
 - θ' makes both formulae P(g(f(y), f(y)), g(f(y))).
 - Therefore, the mgu is $\theta' \circ \theta = [g(f(y), f(y))/x, f(y)/z].$

$$P(x, f(y)) \qquad P(g(z, z), z)$$

$$unify \ x = g(z, z)$$

$$P(g(z, z), f(y)) \qquad P(g(z, z), z)$$

$$unify \ z = f(y)$$

$$P(g(f(y), f(y)), g(f(y))) \qquad P(g(f(y), f(y)), g(f(y)))$$

Example of MGU

1. Find an mgu of P(x) and P(f(c)) where c is a constant.

2. Find an mgu of P(x, y) and P(z, z).

3. Find an mgu of $P(x,c) \succeq P(z,z)$ where c is a constant.

4. Find an mgu of P(g(x), f(y)) and P(z, f(g(z))).

Example of Resolution Principle (1)

- Prove Socrates problem.
 - P(x) = "x is a man."
 - Q(x) = "x is mortal."
 - Let *s* be an object constant for Socrates.

•
$$P(s) \land \forall x (P(x) \to Q(x)) \to Q(s)$$

Example of Resolution Principle (2)

- Show the following formula is valid.
 - $\forall x R(x,x) \land \forall x \forall y \forall z \left(\left(R(x,y) \land R(z,y) \right) \rightarrow R(x,z) \right) \rightarrow \forall x \forall y \forall z \left(\left(R(x,y) \land R(y,z) \right) \rightarrow R(x,z) \right)$

Example of Resolution Principle (3)

• Show the following formula is valid.

$$\forall x \ \forall y (R(x, y) \to R(y, x))$$

$$\land \forall x \forall y \forall z (R(x, y) \land R(y, z) \to R(x, z))$$

$$\land \forall x \exists y \ R(x, y)$$

$$\rightarrow \forall z \ R(z, z)$$

Linear Resolution

- In general, the resolution allows any order of combinations of clauses to get the empty clause.
- Linear Resolution • A set of clauses: S • A linear resolution: C_0, C_1, \dots, C_n • $C_0 \in S, C_n = \Box$ • C_{k+1} is a resolvent of C_k and a clause of *S* or C_j $(j \le k)$. • Example: $S = \{ p \lor \neg q \lor r, \neg r, q \lor \neg r, \neg p \lor r, q \lor r \}$ • Find a linear resolution of $p \lor \neg q \lor r$. C_3 $p \lor \neg q \lor r$ C_{n-1} C'_{n-1}

Logic Programming

- Logic Programming
 - Restrict to Horn clauses.
 - Starting from goal clause and using linear resolution to deduce the empty clause.
- Horn Clause
 - A clause $L_1 \vee \cdots \vee L_m$ where at most one literal is an atomic formula (others are negation of atomic formulae).
 - Program Clause: a clause where one literal is an atomic formula.

•
$$A \lor \neg B_1 \lor \cdots \lor \neg B_n$$

•
$$A \leftarrow B_1, \ldots, B_n$$

Goal Clause: a clause where all the literals are negation of atomic formulae.

•
$$\neg B_1 \lor \cdots \lor \neg B_n$$

•
$$\leftarrow B_1, \ldots, B_n$$

SWI-Prolog

- You may use SWI-Prolog on ccx01.
 - The command is `pl'.
- or, you may download SWI-Prolog to your machine.

```
% pl
Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 5.10.5)
Copyright (c) 1990-2015 University of Amsterdam, VU Amsterdam
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.
For help, use ?- help(Topic). or ?- apropos(Word).
1 ?- ['user'].
human(socrates).
: mortal(X):-human(X).
:
% user://1 compiled 0.00 sec, 1,976 bytes
true.
2 ?- mortal(socrates).
true.
3 ?- halt.
```

Summary

- Resolution Principle
 - resolvent of two clauses
 - a resolution proof tree with empty clause
- Unification
 - Unify two predicates by assigning terms to variables
 - mgu: most general unifier
- Logic Programming
 - Horn clause
 - Linear resolution