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So Far
• Propositional Logic

• Logical connectives (∧, ∨, →, ￢)
• Truth table
• Tautology
• Normal form
• Axiom and theorem
• LK framework
• Soundness and completeness

• Predicate Logic
• Logical Formulas (language, term)
• Quantifiers (∀𝑥𝑥 𝑃𝑃(𝑥𝑥), ∃𝑥𝑥 𝑃𝑃(𝑥𝑥))
• Closed formulae (bound and free variables)
• Semantics of predicate logic (domain, interpretation, structure)
• Valid formulae
• Prenex formulae
• LK framework for predicate logic 
• Soundness and completeness
• Skolemization
• Herbrand Theorem
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Skolemization and Herbrand Theorem
• Skolemization

• The followings are equivalent:
• ∀𝑥𝑥1⋯∀𝑥𝑥𝑛𝑛∃𝑦𝑦 𝐴𝐴 is satisfiable.
• ∀𝑥𝑥1⋯∀𝑥𝑥𝑛𝑛 𝐴𝐴 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)/𝑦𝑦 is satisfiable.

• To check the satisfiability of a formula, it can be transformed into 
∀𝑥𝑥1 ⋯∀𝑥𝑥𝑛𝑛 𝐴𝐴 (where 𝐴𝐴 does not contain any quantifiers) and check its 
satisfiability.

• Herbrand Theorem
• Let ∀𝑥𝑥1 ⋯∀𝑥𝑥𝑛𝑛 𝐴𝐴 be a universal prenex normal form in language 𝐿𝐿 (𝐴𝐴

does not contain any quantifiers). The followings are equivalent:
• ∀𝑥𝑥1⋯∀𝑥𝑥𝑛𝑛 𝐴𝐴 is unsatisfiable.
• There exists a natural number 𝑚𝑚 and 𝐻𝐻𝐿𝐿 terms 𝑡𝑡𝑖𝑖1, … , 𝑡𝑡𝑖𝑖𝑛𝑛 (𝑖𝑖 = 1, … ,𝑚𝑚),

𝐴𝐴[𝑡𝑡11/𝑥𝑥1, . . . , 𝑡𝑡1𝑛𝑛/𝑥𝑥𝑛𝑛] ∧ ⋯∧ 𝐴𝐴[𝑡𝑡𝑚𝑚1/𝑥𝑥1, . . . , 𝑡𝑡𝑚𝑚𝑛𝑛/𝑥𝑥𝑛𝑛]

is unsatisfiable in any Herbrand structure 𝐻𝐻𝐿𝐿, 𝐽𝐽 .
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Resolution Principle for Propositional Logic
• Complementary Literal

• For literals 𝐿𝐿 and 𝐿𝐿′, 𝐿𝐿 and 𝐿𝐿′ are complementary if 𝐿𝐿′ = ￢𝐿𝐿 or 𝐿𝐿 = ￢𝐿𝐿′ .

• Resolvent
• For clauses 𝐿𝐿1 ∨ ⋯∨ 𝐿𝐿𝑛𝑛 and 𝐿𝐿′1 ∨ ⋯∨ 𝐿𝐿′𝑚𝑚, when 𝐿𝐿𝑖𝑖 and 𝐿𝐿′𝑗𝑗 are complementary, 

the clause connecting the two and removing the complementary ones is called 
its resolvent.

𝐿𝐿1 ∨ ⋯∨ 𝐿𝐿𝑖𝑖−1 ∨ 𝐿𝐿𝑖𝑖+1 ∨ ⋯∨ 𝐿𝐿𝑛𝑛 ∨ 𝐿𝐿′1 ∨ ⋯∨ 𝐿𝐿′𝑗𝑗−1 ∨ 𝐿𝐿′𝑗𝑗+1 ∨ ⋯∨ 𝐿𝐿′𝑚𝑚

• Example:
• Resolvent of  𝑝𝑝 ∨￢𝑞𝑞 ∨ 𝑟𝑟 and ￢𝑝𝑝 ∨ 𝑞𝑞

• ￢𝑞𝑞 and 𝑞𝑞 are complementary  ⟹ 𝑝𝑝 ∨ 𝑟𝑟 ∨￢𝑝𝑝
• 𝑝𝑝 and ￢𝑝𝑝 are complementary  ⟹ ￢𝑞𝑞 ∨ 𝑟𝑟 ∨ 𝑞𝑞

• Given a set of clauses, repeatedly adding a resolvent of clauses and 
putting it back to the set is called resolution principle.
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Exercises: Resolvent
1. Resolvent of 𝑝𝑝 ∨￢𝑞𝑞 and ￢𝑝𝑝 ∨ 𝑟𝑟

2. Resolvent of 𝑝𝑝 ∨￢𝑝𝑝 ∨ 𝑞𝑞 and 𝑝𝑝 ∨￢𝑞𝑞 ∨ 𝑟𝑟

3. Resolvent of 𝑝𝑝 ∨￢𝑞𝑞 and ￢𝑝𝑝 ∨ 𝑞𝑞

4. Resolvent of 𝑝𝑝 ∨￢𝑞𝑞 and ￢𝑝𝑝

5. Resolvent of 𝑝𝑝 and ￢𝑝𝑝
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Resolution Proof Tree
• 𝑝𝑝 ∨ ¬𝑞𝑞 ∨ 𝑟𝑟, ¬𝑝𝑝, 𝑞𝑞 ∨ 𝑟𝑟 ∨ 𝑠𝑠, 𝑟𝑟 ∨ ¬𝑠𝑠 ∨ 𝑡𝑡
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𝑝𝑝 ∨ ¬𝑞𝑞 ∨ 𝑟𝑟 ¬𝑝𝑝

¬𝑞𝑞 ∨ 𝑟𝑟

𝑞𝑞 ∨ 𝑟𝑟 ∨ 𝑠𝑠 𝑟𝑟 ∨ ¬𝑠𝑠 ∨ 𝑡𝑡

𝑞𝑞 ∨ 𝑟𝑟 ∨ 𝑟𝑟 ∨ 𝑡𝑡

𝑞𝑞 ∨ 𝑟𝑟 ∨ 𝑡𝑡

𝑟𝑟 ∨ 𝑟𝑟 ∨ 𝑡𝑡

𝑟𝑟 ∨ 𝑡𝑡

Removing duplicates
factoring



Exercise: Resolution Proof Tree
• 𝑝𝑝 ∨ ¬𝑞𝑞 ∨ 𝑟𝑟, ¬𝑟𝑟, 𝑞𝑞 ∨￢𝑟𝑟, ￢𝑝𝑝 ∨ 𝑟𝑟, 𝑞𝑞 ∨ 𝑟𝑟
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Theorem about Resolution Principle
• Let 𝐶𝐶 be a resolvent of 𝐶𝐶1 and 𝐶𝐶2.

• If an assignment 𝑣𝑣 makes both 𝐶𝐶1 and 𝐶𝐶2 true, it also makes 𝐶𝐶 true.
• If 𝑣𝑣 𝑝𝑝 ∨ 𝐴𝐴 = 𝑇𝑇 and 𝑣𝑣 ￢𝑝𝑝 ∨ 𝐵𝐵 = 𝑇𝑇, then 𝑣𝑣 𝐴𝐴 ∨ 𝐵𝐵 = 𝑇𝑇.

• Theorem: If a set of clauses S is satisfiable, S with its 
resolvent is also satisfiable.

• Empty Clause
• A clause without literals.
• Use □ to represent the empty clause.
• It means false or contradiction.

• Theorem: For a set of clauses 𝑆𝑆, if there is a resolution proof 
tree which contains □, 𝑆𝑆 is unsatisfiable.
• In order to show 𝐴𝐴 is a tautology, convert ￢𝐴𝐴 to clauses and find a 

resolution proof tree of □.
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Predicate Logic
• 𝑃𝑃(𝑐𝑐) and ￢𝑃𝑃(𝑧𝑧) are not complementary (where 𝑐𝑐 is a 

constant and 𝑧𝑧 is a variable).
• Replace 𝑧𝑧 with 𝑐𝑐 (i.e. assigning 𝑐𝑐 to 𝑧𝑧)
• 𝑃𝑃(𝑐𝑐) and ￢𝑃𝑃(𝑐𝑐) are complementary.

• 𝑃𝑃(𝑥𝑥,𝑓𝑓(𝑦𝑦)) and ￢𝑃𝑃(𝑧𝑧, 𝑧𝑧) are not complementary
• Let 𝜃𝜃 = [𝑓𝑓(𝑦𝑦)/𝑥𝑥] and 𝜇𝜇 = [𝑓𝑓(𝑦𝑦)/𝑧𝑧] be two assignments.
• 𝑃𝑃(𝑥𝑥, 𝑓𝑓(𝑦𝑦))𝜃𝜃 = 𝑃𝑃(𝑧𝑧, 𝑧𝑧)𝜇𝜇

• From Herbrand theorem,
• In order to show the unsatisfiability of a set of clauses 𝐶𝐶, it is 

enough to show that their ground clauses are unsatisfiable.
• Apply resolution principle to ground clauses.
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Unification
• Atomic formulae 𝑃𝑃(𝑡𝑡1, . . . , 𝑡𝑡𝑛𝑛) and 𝑄𝑄(𝑠𝑠1, . . . , 𝑠𝑠𝑚𝑚) are unifiable 

when
• 𝑃𝑃 and 𝑄𝑄 are the same predicate symbol,
• 𝑛𝑛 and 𝑚𝑚 are equal, and
• an assignment 𝜃𝜃 makes 𝑡𝑡1𝜃𝜃 = 𝑠𝑠1𝜃𝜃, . . . , 𝑡𝑡𝑛𝑛𝜃𝜃 = 𝑠𝑠𝑛𝑛𝜃𝜃.

𝜃𝜃 is called unifier.

• Most General Unifier (mgu)
• 𝜃𝜃 is a unifier, and
• for any unifier 𝜇𝜇, there is a 𝜃𝜃′ and 𝜇𝜇 = 𝜃𝜃′ ◦ 𝜃𝜃.

• Calculate mgu: compare two terms 𝑡𝑡 and 𝑡𝑡′ from left to right, 
and find unequal point.
• If the unequal point is not variable, there is no unifier.
• If the unequal point is a variable 𝑥𝑥 and a term 𝑠𝑠,

• if 𝑥𝑥 appears inside 𝑠𝑠, there is no unifier.
• otherwise, let 𝜃𝜃 = [𝑠𝑠/𝑥𝑥] and find an mgu 𝜃𝜃′ of 𝑡𝑡𝜃𝜃 and 𝑡𝑡′𝜃𝜃, then 𝜃𝜃′ ◦ 𝜃𝜃 is an 

mgu of 𝑡𝑡 and 𝑡𝑡′.
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Example of Unification
• Calsulate an mgu of 𝑃𝑃(𝑥𝑥, 𝑓𝑓(𝑦𝑦)) and 𝑃𝑃(𝑔𝑔(𝑧𝑧, 𝑧𝑧), 𝑧𝑧).

• The first unequal point is 𝑥𝑥 and 𝑔𝑔(𝑧𝑧, 𝑧𝑧).  Let 𝜃𝜃 = [𝑔𝑔(𝑧𝑧, 𝑧𝑧)/𝑥𝑥].
• Applying 𝜃𝜃 gives 𝑃𝑃(𝑔𝑔(𝑧𝑧, 𝑧𝑧), 𝑓𝑓(𝑦𝑦)) and 𝑃𝑃(𝑔𝑔(𝑧𝑧, 𝑧𝑧), 𝑧𝑧).
• The next unequal point is 𝑓𝑓(𝑦𝑦) and 𝑧𝑧.  Let 𝜃𝜃′ = [𝑓𝑓(𝑦𝑦)/𝑧𝑧].
• 𝜃𝜃′ makes both formulae 𝑃𝑃(𝑔𝑔(𝑓𝑓(𝑦𝑦),𝑓𝑓(𝑦𝑦)),𝑔𝑔(𝑓𝑓(𝑦𝑦))).
• Therefore, the mgu is 𝜃𝜃′ ◦ 𝜃𝜃 = [𝑔𝑔(𝑓𝑓(𝑦𝑦), 𝑓𝑓(𝑦𝑦))/𝑥𝑥, 𝑓𝑓(𝑦𝑦)/𝑧𝑧].
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𝑃𝑃(𝑥𝑥,𝑓𝑓(𝑦𝑦)) 𝑃𝑃(𝑔𝑔(𝑧𝑧, 𝑧𝑧), 𝑧𝑧)

unify 𝑥𝑥 = 𝑔𝑔(𝑧𝑧, 𝑧𝑧)

𝑃𝑃(𝑔𝑔(𝑧𝑧, 𝑧𝑧),𝑓𝑓(𝑦𝑦)) 𝑃𝑃(𝑔𝑔(𝑧𝑧, 𝑧𝑧), 𝑧𝑧)
unify 𝑧𝑧 = 𝑓𝑓(𝑦𝑦)

𝑃𝑃(𝑔𝑔(𝑓𝑓(𝑦𝑦), 𝑓𝑓(𝑦𝑦)),𝑔𝑔(𝑓𝑓(𝑦𝑦))) 𝑃𝑃(𝑔𝑔(𝑓𝑓(𝑦𝑦), 𝑓𝑓(𝑦𝑦)),𝑔𝑔(𝑓𝑓(𝑦𝑦)))



Example of MGU
1. Find an mgu of 𝑃𝑃(𝑥𝑥) and 𝑃𝑃(𝑓𝑓(𝑐𝑐)) where 𝑐𝑐 is a constant.

2. Find an mgu of 𝑃𝑃(𝑥𝑥,𝑦𝑦) and 𝑃𝑃(𝑧𝑧, 𝑧𝑧).

3. Find an mgu of 𝑃𝑃(𝑥𝑥, 𝑐𝑐) と 𝑃𝑃(𝑧𝑧, 𝑧𝑧) where 𝑐𝑐 is a constant.

4. Find an mgu of 𝑃𝑃(𝑔𝑔(𝑥𝑥),𝑓𝑓(𝑦𝑦)) and 𝑃𝑃(𝑧𝑧,𝑓𝑓(𝑔𝑔(𝑧𝑧))).
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Example of Resolution Principle (1)
• Prove Socrates problem.

• 𝑃𝑃(𝑥𝑥) = "𝑥𝑥 is a man."
• 𝑄𝑄(𝑥𝑥) = "𝑥𝑥 is mortal."
• Let 𝑠𝑠 be an object constant for Socrates.

• 𝑃𝑃(𝑠𝑠) ∧ ∀𝑥𝑥 𝑃𝑃 𝑥𝑥 → 𝑄𝑄 𝑥𝑥 → 𝑄𝑄(𝑠𝑠)
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Example of Resolution Principle (2)
• Show the following formula is valid.

• ∀𝑥𝑥 𝑅𝑅(𝑥𝑥, 𝑥𝑥) ∧ ∀𝑥𝑥∀𝑦𝑦∀𝑧𝑧 𝑅𝑅 𝑥𝑥,𝑦𝑦 ∧ 𝑅𝑅 𝑧𝑧,𝑦𝑦 → 𝑅𝑅 𝑥𝑥, 𝑧𝑧 →

∀𝑥𝑥∀𝑦𝑦∀𝑧𝑧 𝑅𝑅 𝑥𝑥,𝑦𝑦 ∧ 𝑅𝑅 𝑦𝑦, 𝑧𝑧 → 𝑅𝑅 𝑥𝑥, 𝑧𝑧
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Example of Resolution Principle (3)
• Show the following formula is valid.

∀𝑥𝑥 ∀𝑦𝑦 𝑅𝑅 𝑥𝑥,𝑦𝑦 → 𝑅𝑅 𝑦𝑦, 𝑥𝑥
∧ ∀𝑥𝑥∀𝑦𝑦∀𝑧𝑧 𝑅𝑅 𝑥𝑥,𝑦𝑦 ∧ 𝑅𝑅 𝑦𝑦, 𝑧𝑧 → 𝑅𝑅 𝑥𝑥, 𝑧𝑧

∧ ∀𝑥𝑥∃𝑦𝑦 𝑅𝑅 𝑥𝑥,𝑦𝑦
→ ∀𝑧𝑧 𝑅𝑅 𝑧𝑧, 𝑧𝑧
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Linear Resolution
• In general, the resolution allows any order of combinations of clauses 

to get the empty clause.

• Linear Resolution
• A set of clauses: 𝑆𝑆
• A linear resolution: 𝐶𝐶0,𝐶𝐶1, … ,𝐶𝐶𝑛𝑛
• 𝐶𝐶0 ∈ 𝑆𝑆, 𝐶𝐶𝑛𝑛 = □
• 𝐶𝐶𝑘𝑘+1 is a resolvent of 𝐶𝐶𝑘𝑘 and a clause of 𝑆𝑆 or 𝐶𝐶𝑗𝑗 （𝑗𝑗 ≤ 𝑘𝑘）.

• Example: 𝑆𝑆 = 𝑝𝑝 ∨￢𝑞𝑞 ∨ 𝑟𝑟, ￢𝑟𝑟, 𝑞𝑞 ∨￢𝑟𝑟, ￢𝑝𝑝 ∨ 𝑟𝑟, 𝑞𝑞 ∨ 𝑟𝑟
• Find a linear resolution of 𝑝𝑝 ∨￢𝑞𝑞 ∨ 𝑟𝑟.
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𝐶𝐶0 𝐶𝐶′0

𝐶𝐶1 𝐶𝐶′1

𝐶𝐶2 𝐶𝐶′2

𝐶𝐶3

□

𝐶𝐶′𝑛𝑛−1
𝐶𝐶𝑛𝑛−1

𝑝𝑝 ∨￢𝑞𝑞 ∨ 𝑟𝑟



Logic Programming
• Logic Programming

• Restrict to Horn clauses.
• Starting from goal clause and using linear resolution to deduce the 

empty clause.

• Horn Clause
• A clause 𝐿𝐿1 ∨ ⋯∨ 𝐿𝐿𝑚𝑚 where at most one literal is an atomic formula 

(others are negation of atomic formulae).
• Program Clause: a clause where one literal is an atomic formula.

• 𝐴𝐴 ∨￢𝐵𝐵1 ∨ ⋯∨￢𝐵𝐵𝑛𝑛
• 𝐴𝐴 ← 𝐵𝐵1, . . . ,𝐵𝐵𝑛𝑛

• Goal Clause: a clause where all the literals are negation of atomic 
formulae.
• ￢𝐵𝐵1 ∨ ⋯∨￢𝐵𝐵𝑛𝑛
• ← 𝐵𝐵1, . . . ,𝐵𝐵𝑛𝑛
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SWI-Prolog
• You may use SWI-Prolog on ccx01.

• The command is `pl'.
• or, you may download SWI-Prolog to your machine.
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% pl
Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 5.10.5)
Copyright (c) 1990-2015 University of Amsterdam, VU Amsterdam
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

1 ?- ['user'].
human(socrates).
|: mortal(X):-human(X).
|:
% user://1 compiled 0.00 sec, 1,976 bytes
true.

2 ?- mortal(socrates).
true.

3 ?- halt.
%



Summary
• Resolution Principle

• resolvent of two clauses
• a resolution proof tree with empty clause

• Unification
• Unify two predicates by assigning terms to variables
• mgu: most general unifier

• Logic Programming
• Horn clause
• Linear resolution
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