FUNDAMENTALS OF LOGIC NO.12 INCOMPLETENESS THEOREM

Tatsuya Hagino hagino@sfc.keio.ac.jp

lecture URL

https://vu5.sfc.keio.ac.jp/slide/

So Far

- Propositional Logic
 - Logical connectives (\land , \lor , \rightarrow , \neg)
 - Truth table
 - Tautology
 - Normal form
 - Axiom and theorem
 - LK framework
 - Soundness and completeness
- Predicate Logic
 - Logical Formulas (language, term)
 - Quantifiers $(\forall x P(x), \exists x P(x))$
 - Closed formulae (bound and free variables)
 - Semantics of predicate logic (domain, interpretation, structure)
 - Valid formulae
 - Prenex formulae
 - LK framework for predicate logic
 - Soundness and completeness
 - Skolemization
 - Herbrand Theorem
 - Resolution Principle

What is number?

- Various kinds of number:
 - natural number
 - integer
 - rational number
 - real number
 - complex number
- Taught from elementary school.
 - What is the definition?
 - Does it really exist?
 - Why 1 + 1 = 2? Definition? Prove?
 - Why $(-1) \times (-1) = 1$?

Peano Axioms for Natural Numbers

- PA: Peano Axioms for natural numbers
- Language L_{PA}
 - constant: 0
 - unary function symbol: S
 - binary function symbol: +, \times
 - axioms:

(1)
$$\forall x \neg (S(x) = 0)$$

(2) $\forall x \forall y (S(x) = S(y) \rightarrow x = y)$
(3) $\forall x (x + 0 = x)$
(4) $\forall x \forall y (x + S(y) = S(x + y))$
(5) $\forall x (x \times 0 = 0)$
(6) $\forall x \forall y (x \times S(y) = (x \times y) + x)$
(7) for any formula A , $(A[0/x] \land \forall x (A \rightarrow A[S(x)/x])) \rightarrow \forall x A$
(7) is the mathematical induction.

Standard Model

- Language L_{PA} structure $N = \langle N, I \rangle$
 - *N* is the set of natural numbers.
 - 0¹ is natural number 0
 - $S^{I}(n) = n + 1$ (next number)
 - $+^{I}(n,m) = n + m$ (addition)
 - $\times^{I}(n,m) = n \times m$ (multiplication)
- N is a model of PA theory.
 - *PA* is the theory to capture the natural number *N*.
 - *N* is the *standard model* of *PA* theory.

• *n*

- apply S to 0 for n times.
- $\overline{n} = S(\cdots(S(0))\cdots)$

•
$$\overline{1} = S(0), \overline{2} = S(S(0)), \overline{3} = S(S(0))$$

Existence of Natural Number

- The natural number *N* satisfies *PA* theory, but does it really exist?
- Assuming the set theory:
 - 0 is the empty set Ø.
 - For a set A, $S(A) = A \cup \{A\}$.
 - Let N be the intersection of sets which are closed under S.
- From the infinite set axiom, N exists.

•
$$0 = \emptyset$$

•
$$\overline{1} = S(0) = \emptyset \cup \{\emptyset\} = \{\emptyset\}$$

•
$$\overline{2} = S(\overline{1}) = \{\emptyset\} \cup \{\{\emptyset\}\} = \{\emptyset, \{\emptyset\}\}$$

•
$$\overline{3} = S(\overline{2}) = \{\emptyset, \{\emptyset\}\} \cup \{\{\emptyset, \{\emptyset\}\}\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$$

• Define + and × by PA axioms.

Properties of Addition

- The addition is defined by the following axioms of *PA* theory.
 - (3) $\forall x(x + 0 = x)$ (4) $\forall x \forall y(x + S(y) = S(x + y))$

•
$$\overline{1} + \overline{1} = ?$$

• $\overline{1} + \overline{1} = S(0) + S(0) = S(S(0) + 0) = S(S(0)) = \overline{2}$

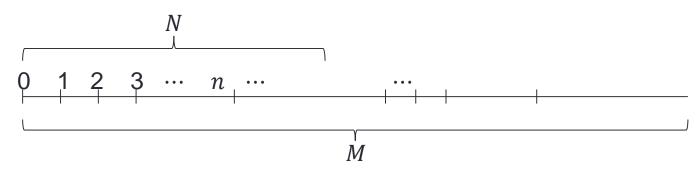
- Theorems about addition:
 - $\forall x \forall y (x + y = y + x)$
 - $\forall x \forall y \forall z((x+y)+z=x+(y+z))$

Non Standard Model

•
$$x < y \equiv \exists z(x + S(z) = y)$$

• $0 < \overline{1} < \overline{2} < \overline{3} < \dots < \overline{n} < \dots$
• $\forall x(x < \overline{n+1} \rightarrow (x = 0 \lor x = \overline{1} \lor \dots \lor x = \overline{n}))$

- $x \le y \equiv x = y \lor x < y$
- non-standard model of PA theory.
 - *M* has the same structure with *N*.



- \leq of *M* is not well-ordered.
 - well-ordered set: any subset has the smallest element.
 - \leq of *N* is well-ordered.

•
$$\forall x (x \neq 0 \rightarrow \exists y (x = S(y)))$$

Soundness and Completeness

Soundness

- What has been proved is always valid.
- Logical framework and axiomatic theory need to be sound.
- Completeness
 - Valid thing can be proved.
 - The predicate logic is sound and complete.
 - A closed formula is either valid or not valid, and a valid formula can be proved.
- For axiomatic theory, it does not need to be complete.
 - Axiomatic theory of groups:

1.
$$\forall x \forall y \forall z((x \cdot y) \cdot z = x \cdot (y \cdot z))$$

2.
$$\forall x (e \cdot x = x \land x \cdot e = x)$$

3.
$$\forall x(x \cdot x^{-1} = e \land x^{-1} \cdot x = e)$$

• $\forall x \forall y (x \cdot y = y \cdot x)$ or its negation cannot be proved.

Incompleteness of Peano Arithmetic

- Peano arithmetic for natural number: *PA*
 - Axiomatic theory for natural number structure $N = \langle N, I \rangle$.
 - List all the axioms which are necessary to prove mathematical theorems of natural number.
 - Its completeness is preferable.
- Gödel First Incompleteness Theorem
 - If *PA* is consistent (i.e. cannot prove contradiction), it is incomplete.
- PA is incomplete!
 - There is a theorem which is valid for natural number but cannot be proved from *PA* axioms.
- How about add more axioms to PA?
 - No matter how axioms are added to *PA*, if the set of axioms are decidable (i.e. there is a procedure to check whether give formula is an axiom or not), it is incomplete.
- Gödel Second Incompleteness Theorem
 - *PA* cannot prove that *PA* is consistent.

Gödel Statement

- The incompleteness of *PA* can be shown by creating the following Gödel statement,
 - *G* is the formula that `*G* cannot be proved'.
- If *PA* is complete, either *G* or its negation is provable.
 - If G is provable, G cannot be proved.
 - If *G* is not provable, its negation is provable, but it is `*G* is provable'.
 - Either way, contradicts. Therefore, if *PA* is complete, *PA* is inconsistent.
 - Taking its contraposition, if PA is consistent, PA is incomplete.

Gödel Number

- Gödel statement G = G cannot be proved is the self reference statement (like I am a liar).
 - Peano arithmetic is an axiomatic theory for natural number.
 - Code formulae as numbers.

Gödel number

- Assign unique number to each symbol of the language.
- Formula *P* is a sequence of symbols and let $x_1, x_2, ..., x_n$ be numbers associated with them.
- The Gödel number of *P* is: $\#P = 2^{x_1} \times 3^{x_2} \times \cdots \times p_n^{x_n}$ where p_n it the *n*th prime number.
- Given a Gödel number, by using prime number decomposition, the original formula can be recovered.

Construction of Gödel Statement

- Let *PA* be an axiomatic theory which contains the natural number axioms and modus ponens as the inference rule.
- The following formulae can be constructed:
 - A(x) = x is a Gödel number of an *PA* axiom'
 - M(x, y, z) = `formula z can be inferenced from formula x and formula y using modus ponens'
 - P(x, y) =`sequence y of formulae is the proof of formula x'
 - $T(x) = \exists y P(x, y) =$ `formula x is provable in PA'
 - a(y,z) =`the Gödel number of a formula y assign z to the variable x'

Gödel statement:

- Let g be the Gödel number of $\neg T(a(x, x))$.
- Gödel statement is $G = \neg T(a(g,g))$.

Proof of Incompleteness Theorem

- Proof of the first incompleteness theorem:
 - If G is provable, a(g,g) represents the Gödel number of a formula which cannot be proved, but it is G and contradicts.
 - If $\neg G$ is provable, a(g,g) represents the Gödel number of a formula which can be proved, but it is *G* and contradicts.
 - Therefore, neither G or $\neg G$ can be proved.
- Proof of the second incompleteness theorem:
 - Let b be the Gödel number of contradiction.
 - $\neg T(b) = PA$ is consistent'
 - If G of the first incompleteness theorem is provable, it contradicts, therefore, $G \rightarrow T(b)$
 - Taking the contraposition, $\neg T(b) \rightarrow \neg G$
 - Similarly, if $\neg G$ is provable, it contradicts, therefore, $\neg G \rightarrow T(b)$
 - Taking the contraposition, $\neg T(b) \rightarrow G$
 - Therefore, if PA is consistent, it contradicts.
 - PA consistency cannot be proved in PA.

Incompleteness Theorem and Invention of Computer

- Why *PA* is incomplete?
 - By coding formula as a number, construct a self reference formula.
 - *PA* gives a power of encoding anything as a number.
- John von Neumann
 - Tried to prove that *PA* is complete.
 - Shocked by Gödel incompleteness theorem.
 - Use idea of Gödel number to invent von Neumann computer.
 - Digital computer handle numbers.
 - Programs are represented as numbers and stored in the memory (stored program).
 - Programs are data.

Summary

- Peano Arithmetic
 - mathematical induction
 - standard model
- Incompleteness theorem
 - If *PA* is consistent, it is incomplete.
 - Consistency of *PA* cannot be proved in *PA*.