FUNDAMENTALS OF LOGIC NO. 14 OTHER FRAMEWORKS

Tatsuya Hagino hagino@sfc.keio.ac.jp

lecture URL

https://vu5.sfc.keio.ac.jp/slide/

Intuitionistic Logic

- 20th Century Mathematics
 - Set Theory by George Cantor
 - ``The essence of mathematics is its freedom."
 - Mathematical Objects exist so long as they do not cause any contradiction.
 - In 19th century, mathematics only handle real objects: geometry, integers, fractions, real numbers, and so on.
 - In 20th century, mathematics handles abstract objects: group, field, topological space, category theory, and so on.
- Overcoming contradiction
 - Cantor's set theory contains contradictions like Russel's paradox.
 - From formalism point of view, set theory introduced some restriction to its axioms in order to overcome the contradiction.
 - All the mathematical results have been safely formalized on top of set theory.

Intuitionism

- Mathematics is considered to be purely the result of the constructive mental activity of humans rather than the discovery of fundamental principles claimed to exist in an objective reality.
- The truth of a mathematical statement is a subjective claim: a mathematical statement corresponds to a mental construction, and a mathematician can assert the truth of a statement only by verifying the validity of that construction by intuition.

Meaning of Existence

- In classical logic, refutation can be used to show the existence.
 - Assume there does not exist an object of property *P*, and if it contradicts, then there must exist an object having property of *P*.
- Intuitionism does not accept the existence proof by refutation.
 - In order to show an existence of an object of property *P*, one need to find a concrete finite procedure to fine the object.
- Example: A proof in classical logic of ``there exists irrational number x and y and a rational number z where $x^y = z''$.
 - $\sqrt{2}^{\sqrt{2}}$ is either a rational number or an irrational number.
 - If $\sqrt{2}^{\sqrt{2}}$ is a rational number, taking x and y as $\sqrt{2}$ makes $z = x^y$ a rational number.
 - If $\sqrt{2}^{\sqrt{2}}$ is an irrational number, taking x as $\sqrt{2}^{\sqrt{2}}$ and y as $\sqrt{2}$ makes $z = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = 2$ a rational number.
- This proof does not show what are x, y, z concretely, so intuitionism does accept this proof.

Difference with Classical Logic

- In classical logic, $\exists x \forall y (P(y) \rightarrow P(x))$ is valid.
 - If $P(a_0)$ holds for some a_0 , $P(b) \rightarrow P(a_0)$ holds for any b. Therefore, $\forall y (P(b) \supset P(a_0))$ holds.
 - If P(c) does not hold for any $c , P(c) \rightarrow P(d)$ holds for an arbitrary chosen d. Therefore, $\forall y (P(y) \rightarrow P(d))$ holds.
 - In both cases, $\exists x \forall y (P(y) \rightarrow P(x))$ holds.
 - Intuitionism does not accept this proof because it does not show concretely what x should be chosen to make $\forall y(P(y) \rightarrow P(x))$ true.

Double Negation

- $\neg \neg A \rightarrow A$ is valid in classical logic.
- Let A be $\exists x P(x)$, then $\neg \neg \exists x P(x) \rightarrow \exists x P(x)$.
- $\neg \neg \exists x P(x)$ means ``It contradicts if x does not exist to make P(x) true."
- In intuitionisum, ∃xP(x) means ``There is a concrete way to find x to make P(x) true."
- $\neg \neg \exists x P(x) \rightarrow \exists x P(x)$ means in intuitionism ``If it contradicts that non existence of x to make P(x) true, then there exists a concrete way to find x to make P(x) true." Therefore, this is not valid in intuitionism.

Law of Excluded Middle

• *A* ∨ *B*

- In intuitionism, this is true when *A* is shown true concretely or *B* is shown true concretely.
- Law of Excluded Middle
 - *A* ∨ ¬*A*
 - This is valid in classical logic.
 - In general, this is not valid in intuitionism.
- Goldbach's conjecture
 - ``Every even integer greater than 2 can be expressed as the sum of two primes."
 - The conjecture has been shown to hold for all integers less than 4×10^{18} , but remains unproven despite considerable effort.
 - P(n) = 2(n + 2) cannot be expressed as the sum of two primes"
 - $\exists x P(x) \lor \neg \exists x P(x)$ is not proven true in intuitionism.

Constructive Mathematics and Programs

Constructive mathematics

- mathematics based on intuitionism
- do not use refutation
- constructive concepts and constructive proofs

Program

- calculates a solution to a problem
- gives a procedure to find a solution.
- The program itself is a proof of the problem.
- Example:
 - ``There exists a greatest common divisor for any two natural numbers."
 - Euclidean algorithm is an existence proof of this problem.
- Program = Proof
 - A program can be extracted from a constructive proof.

Intuitionistic Logic Framework

- Intuitionistic Logic Framework LJ
 - Same axioms and rules with classical logic framework LK,
 - But, LJ restricts a sequent as A₁,..., A_m ⊢ B (where m can be 0 and B may be empty)
- Axioms and inference rules for structure:

(where Γ is a sequence of formulae and *B* is empty of a single formua)

Inference Rules of Intuitionistic Logic

Inference rules for logical connectives:

$$\frac{A, \Gamma + C}{A \land B, \Gamma + C} (\land L_{1}) \qquad \frac{B, \Gamma + C}{A \land B, \Gamma + C} (\land L_{2}) \qquad \frac{\Gamma_{1} + A \qquad \Gamma_{2} + B}{\Gamma_{1}, \Gamma_{2} + A \land B} (\land R)$$

$$\frac{A, \Gamma_{1} + C \qquad B, \Gamma_{2} + C}{A \lor B, \Gamma_{1}, \Gamma_{2} + C} (\lor L) \qquad \frac{\Gamma + A}{\Gamma + A \lor B} (\lor R_{1}) \qquad \frac{\Gamma + B}{\Gamma + A \lor B} (\lor R_{2})$$

$$\frac{\Gamma_{1} + A \qquad B, \Gamma_{2} + C}{A \to B, \Gamma_{1}, \Gamma_{2} + C} (\to L) \qquad \frac{A, \Gamma + B}{\Gamma + A \to B} (\to R)$$

$$\frac{\Gamma + A}{\neg A, \Gamma +} (\neg L) \qquad \frac{A[t/x], \Gamma + B}{\forall x \land A, \Gamma + B} (\lor L) \qquad \frac{A[z/x], \Gamma + B}{\exists x \land A, \Gamma + B} (\exists L)$$

$$\frac{A, \Gamma + C}{\Gamma + \neg A} (\neg R) \qquad \frac{\Gamma + A[z/x]}{\Gamma + \forall x \land A} (\lor R) \qquad \frac{\Gamma + A[t/x]}{\Gamma + \exists x \land A} (\exists R)$$

Theorem about Intuitionistic Logic

- Cut elimination theorem for intuitionistic logic
 - If $\Gamma \vdash A$ is provable in LJ, there exists a proof figure of $\Gamma \vdash A$ which does not contain cut rule.
- Decision problem of intuitionistic propositional logic
 - There is an algorithm to check whether a given propositional formula is provable in LJ or not.
- Decision problem of intuitionistic predicate logic
 - There does not exist an algorithm to check whether a given predicate formula is provable in LJ or not.
- Disjunction property of intuitionistic logic
 - If $A \lor B$ is provable in LJ, A or B is provable in LJ.
- Existence property of intuitionistic logic
 - If $\exists x A$ is provable in LJ, there is a term t and A[t/x] is provable in LJ.

Modal Logic

- Modal logic
 - Everyday things may change its truth depending on state or situation.
 - ``The sum of inner angles of a triangle is 180°" is always true (i.e. does not depend on state or situation).
 - ``The elevator is on the third floor" is true or false depending on where the elevator is.
 - Separate the truth of a statement from its necessity or possibility.
- Formula in modal logic
 - *□A*
 - it is necessarily A.
 - ¬□A
 - It is not necessarily A.
 - 🗆 🗆 A
 - It is necessarily true that A is not true.
 - There is no possibility of A.
 - ¬□¬A
 - It is possibly A.
 - *\ID A*

Modal Logic Framework

- Framework K
 - Add the following rule to the sequent calculus framework LK of classical logic:

 $\Gamma \vdash A$ $\Box \Gamma \vdash \Box A$

- The following formulae can be proved in K:
 - $\Box A \land \Box B \vdash \Box (A \land B)$
 - $\Box(A \land B) \vdash \Box A \land \Box B$
 - $\Box A \lor \Box B \vdash \Box (A \lor B)$
 - $\Box(A \to B) \vdash \Box A \to \Box B$

Axioms in Modal Logic

- Several axioms may be add:
 - D: $\Box A \rightarrow \Diamond A$
 - T: $\Box A \rightarrow A$
 - 4: $\Box A \rightarrow \Box \Box A$
 - B: $A \to \Box \diamondsuit A$
 - 5: $\Diamond A \rightarrow \Box \Diamond A$
- Modal logic S4
 - Framework K with axioms T and 4.
- Modal logic S5
 - Framework K with axioms T and 5.
- Relation among axioms.
 - KB4 and KB5 are the same modal logic.
 - KDB4, KDB5 and S5 are the same modal logic.

Meaning of Modal Operators

- Interpretation of $\Box A$ in the time flow:
 - If A is always true, $\Box A$ is true.
- · If `always' means `always in the future',
 - Axiom $T: \Box A \rightarrow A$ does not hold (A may not be true now).
- If `always' means `now and in the future',
 - Axiom T: $\Box A \rightarrow A$ holds.
 - Axiom 4: $\Box A \rightarrow \Box \Box A$ holds.
 - Axiom 5: $\diamond A \rightarrow \Box \diamond A$ does not hold.
- If `always' means `now and in the past and future',
 - Axiom 5: $\diamond A \rightarrow \Box \diamond A$ holds.

Kripke Semantics

- Using possible worlds and reachability of worlds, the truth is determined.
- $\Box A$ is true in a possible world *a* if and only if *A* is true in any world *b* which is reachable from *a*.

Intuitionistic Logic and Modal Logic

- Gödel translation or McKinsey-Tarski translation T
 - $T(p) = \Box p$
 - $T(A \land B) = T(A) \land T(B)$
 - $T(A \lor B) = T(A) \lor T(B)$
 - $T(A \to B) = \Box(T(A) \to T(B))$
 - $T(\neg A) = \Box \neg T(A)$

Gödel-McKinsey-Tarski Theorem:

• A sequent $\Gamma \vdash A$ consisting of propositional logical formulae is provable in intuitionistic logic framework LJ, if and only if $T(\Gamma) \rightarrow T(A)$ is provable in modal logic S4.

Tense Logic

- Tense logic or Temporal logic
 - Refine modal logic for tense.
 - [P]A = A is always true in the past
 - [F]A = A is always true in the future
 - $\langle P \rangle A = \neg [P] \neg A$ $\langle F \rangle A = \neg [F] \neg A$
 - $\Box A = [P]A \land A \land [F]A \qquad \Box A = \langle P \rangle A \lor \langle F \rangle A$

Framework Kt

$$\begin{array}{l} A \rightarrow [P] < F > A \\ F = A \end{array} \begin{array}{l} A \rightarrow [F] < P > A \end{array} \\ A \rightarrow [F] < P > A \end{array} \\ \left[P] A \rightarrow [P] [P] A \end{array} \begin{array}{l} F = A \end{array} \\ \left[F] A \rightarrow [F] [F] A \end{array} \\ \left[F = A \end{array} \\ \left[F] \Gamma + [P] A \end{array} \begin{array}{l} \Gamma + A \end{array} \\ \left[F] \Gamma + [F] A \end{array} \end{array}$$

- More modal operators:
 - OA = A is true next
 - A # B = A is true until B''

Intentional Logic

- Intentional logic
 - $\Box A$ has been interpreted as ``necessarily A'', but can be interpreted differently.

Deontic logic

- $\Box A$ is interpreted as ``A is required".
- $\diamond A$ is interpreted as ``A is permitted".
- KD axiom $\Box A \rightarrow \Diamond A$ means ``If A is required, A is permitted'', so this holds.
- T axiom □A → A means ``If A is required, A is true", so this does not hold in general.
- Logic of Knowledge or Logic of Belief
 - □A is interpreted as ``A is know."
- Provability logic
 - □A is interpreted as ``A is provable."
 - Gödel second incompleteness theorem ``If PA is consistent it cannot prove its consistency" is:
 - $\bullet \neg \Box \bot \rightarrow \neg \Box \neg \Box \bot$

Dynamic Logic

- Dynamic logic
 - Used in program specification and verification.
 - For a program Π, [Π]A means ``After the execution of program Π, A holds."
 - Let Π_1 ; Π_2 be execute Π_2 after the execution of Π_1 , and Π^* be the finite repetitive execution of Π :
 - $[\Pi_1; \Pi_2] A \equiv [\Pi_1] [\Pi_2] A$
 - $[\Pi^*]A \rightarrow (A \land [\Pi][\Pi^*]A)$
 - $(A \rightarrow [\Pi]A) \rightarrow (A \rightarrow [\Pi^*]A)$

Resource Logic

Resource logic

 Do not allow weakening and contraction of intuitionistic logic framework LJ

$$\frac{\Gamma \vdash B}{A, \Gamma \vdash B} (WL) \qquad \frac{\Gamma \vdash}{\Gamma \vdash A} (WR) \qquad \frac{A, A, \Gamma \vdash B}{A, \Gamma \vdash B} (CL)$$

• Introduce new logical connective $A \otimes B$

$$\frac{\Gamma_{1}, A, B, \Gamma_{2} \vdash C}{\Gamma_{1}, A \otimes B, \Gamma_{2} \vdash C} \quad (WL) \qquad \frac{\Gamma_{1} \vdash A \quad \Gamma_{2} \vdash B}{\Gamma_{1}, \Gamma_{2} \vdash A \otimes B} \quad (WR)$$

- Example: A = ``Pay 500 yen", B = ``Can buy one book", C = ``Can drink a cup of coffee"
 - From $A \vdash B$ and $A \vdash C$, $A \otimes A \vdash B \otimes C$ can be proved.
 - $A \vdash B \otimes C$ cannot be proved.
 - $A \vdash B \land C$ can be proved.

Other Topics about Logic

- Second order predicate logic and higher order predicate logic
 - In the first order predicate logic, variables over objects can be quantified.
 - In the second order predicate logic, variables over subsets of objects (i.e. predicates) can also be quantified.
 - In the third order predicate logic, variables over subsets of subsets of objects can also be quantified.
 - In general, *n*th order predicate logic can be defined.
 - In the higher order predicate logic include all the nth order predicate logic.
- Three value logic and fuzzy logic
 - In three value logic, there is a value in between true and false.
 - In fuzzy logic, the assignment is a continual function to [0,1].
- Non-monotonic logic
 - Monotonicity: new knowledge does not interfere with already existing knowledge.
 - ``A bird can fly" but ``Penguins cannot fly".

Summary

- Mathematical Logic
 - Propositional Logic
 - Logical Connectives
 - Predicate Logic
 - Quantifiers
- Logical Framework
 - Proof and Theorem
 - LK Framework, NK Framework
 - Soundness and Completeness
- Resolution Principle
 - Normal Form
 - Clause