
MATHEMATICS FOR INFORMATION SCIENCE 

NO.1 WHILE PROGRAM

Tatsuya Hagino

hagino@sfc.keio.ac.jp

1

https://vu5.sfc.keio.ac.jp/slide/

Slides URL



Course Summary
• A program can be seen as a mathematical function which 

calculates output value for a given input. In this lecture, we will 
look into the property of functions which correspond to 
programs.

2

• Firstly, in order to understand what we can calculate using programs, 
we compare three models of programs: recursive functions, Turing 
machines and lambda calculi. We will show that those three models 
are equivalent.

• Secondly, we will study complete partial order sets which give 

the model of lambda calculi and programs.

• Thirdly, in order to understand data types of programs, we will 

look into category theory which is the abstraction of functions 

and has an ability to reveal the beauty behind data types.



Course Schedule

1.While Program

2.Primitive Recursive 
Function

3.Recursive Function

4.Turing Machine

5.Turing Machine and 
Computability

6.Lambda Calculus

7.Lambda Calculus and 
Computability

8. Complete Partial 
Ordered Set

9. CPO and Data Type

10. Continuous Function

11. Denotational 
Semantics*

12. Introduction to 
Category Theory

13. Limits and Adjunctions

14. Category Theory and 
Data Type

15. Summary*

3

*not in-class lecture



What is Computation?
• Computation = what computers can calculate

4

• Focus only on computation for Natural Numbers.

• 𝑁 = {0, 1, 2, 3, 4, 5, 6, 7,⋯ }

• Computers can calculate four arithmetic operations (add, subtract,
multiply, divide) on natural numbers.

• What computers can do:

• For subtraction of a bigger number from a small number, the result is 0.

• e.g. 3 − 5 = 0

• For division, the result is rounded down to natural numbers (no fraction).

• e.g. 5 ÷ 2 = 2

• Store the result of arithmetic operations into variables (Assignment Statement).

• Use values stored in variables in arithmetic operations.

• Process arithmetic and others one by one based on prescribed steps.

• Depending on values of variables, do different steps (Conditional Statement).



Computation and Algorithm

• Computation:
• Store several natural numbers in variables

• Process arithmetic and others based on prescribed steps.

• The result of computation is stored in a variable.

• Algorithm can be represented as a flow chart.

5

• Mathematically
• Computation = what computers can calculate

• Computers can be seen as functions.

• What kind of functions can computer calculate?

• Computability

• Algorithm = description of computation steps

• Algorithm can be represented as a flow chart.



Greatest Common Divisor

• Calculate the greatest common divisor of two natural numbers

• the biggest common divisor

• the biggest number which can divide both numbers

• for natural numbers m and n, let gcd(𝑚, 𝑛) be the greatest common 

divisor

6

• Example： the greatest common divisor of 315 and 231

• Divisors of 315

•

• Divisors of 213

•

• Common divisors of 315 and 231

•

• The greatest common divisor of 315 and 231

•



Euclidean Algorithm

• The oldest algorithm by Euclid

• Euclid: BC330 -- BC275

• Euclid's Elements

7

• Euclidean algorithm of caluculating the greatest common 
divisor of two natural numbers 𝑛 and 𝑚:

1. Calculate the remainder 𝑟 of 𝑛 divided by 𝑚.

2. Replace 𝑛,𝑚 by 𝑚, 𝑟, and do 1 again.

• 𝑛 = 𝑞 × 𝑚 + 𝑟

• gcd(𝑛,𝑚) is equal to gcd(𝑚, 𝑟)

3. Repeat until 𝑛 becomes divisible by 𝑚.

4. When the remainder is 0, 𝑛 is the answer.

• gcd(𝑛, 0) = 𝑛



Euclidean Algorithm Example

• Example: gcd(315,231)

8

231

315
=
231 ÷

315 ÷
=

• 231 ÷ = 2⋯

• gcd 231, = gcd ,

• gcd 315,231

• 315 ÷ 231 = 1⋯

• gcd 315,231 = gcd 231,

• ÷ = 1⋯

• gcd , = gcd ,

• ÷ = 3⋯0

• gcd , = gcd , 0

• gcd , 0 =

Euclidean Algorithm 

1. Calculate the remainder 𝑟 of 𝑛
divided by 𝑚.

• gcd 𝑛,𝑚 = gcd(𝑚, 𝑟)
2. Replace 𝑛,𝑚 by 𝑚, 𝑟
3. Repeat until 𝑛 becomes divisible 

by 𝑚.

4. When the remainder is 0 

• gcd(𝑛, 0) = 𝑛



Flow Chart

• Assignment

9

𝑥 ∶= 𝑒

where 𝑒 is an expression of variables, natural numbers and 

arithmetic operations.

• Conditional branch

where 𝑒1 and 𝑒2 are expressions of variables, natural numbers and 

arithmetic operations.

𝑒1 = 𝑒2

yes

no



Input and Output

• Input

10

input(𝑥1, 𝑥2, ⋯ , 𝑥𝑛)

• Output

output(𝑦)

• Flow chart program

• Start from input box, connect assignment and conditional boxes 

and end with output box.

• Output box specifies the result of the function

input output

𝑓:𝑁 × 𝑁 ×⋯×𝑁 → 𝑁



A Simple Flow Chart Program

11

input(𝑥, 𝑦)

output(𝑧)

𝑧 ∶= 𝑥 + 𝑦

input output

𝑓:𝑁 × 𝑁 → 𝑁 𝑓 𝑥, 𝑦 = 𝑥 + 𝑦



Flow Char of Calculating 1+ 2+⋯+𝑛

12

input(𝑛)

output(𝑠)

𝑠 ∶= 0

𝑖 ∶= 1

𝑖 = 𝑛 + 1
yes

no

𝑠 ∶= 𝑠 + 𝑖

𝑖 ∶= 𝑖 + 1

𝑓:𝑁 → 𝑁

𝑓 𝑛 =

𝑖=1

𝑛

𝑖



Flow Chart for Euclidean Algorithm

13

Write a flow chart for 

Euclidean algorithm.
input(𝑛,𝑚)

output(𝑛)



While Program

• Programming Language

• For computers, it is difficult to specify flow charts which are two 

dimensional graphs.

• Want to express them as one dimensional language.

14

• While Programs

• input(𝑥1, 𝑥2, ⋯ , 𝑥𝑛)

• output(𝑦)

• 𝑥:= 𝑒

• {𝑃1; 𝑃2; ⋯ ; 𝑃𝑛}

• if (𝑒1 = 𝑒2) then 𝑃 else 𝑄

• while (𝑒1 = 𝑒2) 𝑃



Example: While Program

• Calculating 1 + 2 +⋯+ 𝑛

15

input(n);

s := 0;

i := 1;

while (i <= n) {

s := s + i;

i := i + 1

}

output(s);

input(n);

s := 0;

i := 1;

while (1 - (i - n) = 1) {

s := s + i;

i := i + 1

}

output(s);



Example of While Program

• Write a while program for Euclidean algorithm.

16

input(n,m);

output(n);



Flow Chart and While Program

• Theorem:

• Any while program can be expressed as a flow chart program.

• Any flow chart program can be expressed as a while program.

17

• Proof:

• It is obvious that any while program can be expressed as a flow 

chart program.

• Inverse

• Put a number to each box (except input box) in the flow chart.

• Introduce a new variable to manage the box number.

• Use box numbers instead of arrows in the flow chart.

• Write a while program which manages the box number.



Example of conversion

18

input(𝑥)

𝐴

yes

no

𝐵

𝐶

𝐸

𝐷

output(𝑦)

yes

no

input(𝑥)

𝐴

yes

no

𝐵

𝐶

𝐸

𝐷

output(𝑦)

yes

no

Put a number

to each box

1

2

3

4

5

6



Example of conversion
19

Introduce a new variable

Use box number

to connectinput(𝑥)

𝐴

yes

no

𝐵

𝐶

𝐸

𝐷

output(𝑦)

yes

no

1

2

3

4

5

6

input(𝑥)

𝑎 ≔ 1

output(𝑦)

𝐴
yes

no

1𝑎 = 1 𝑎 ≔ 6

𝑎 ≔ 2

yes

no

𝐵2𝑎 = 2 𝑎 ≔ 3
yes

no

𝐷4𝑎 = 4 𝑎 ≔ 1
yes

no

𝐸5𝑎 = 5 𝑎 ≔ 6
yes

no

𝑎 = 3 𝐶
yes

no

3 𝑎 ≔ 5

𝑎 ≔ 4

yes

no



Example of Conversion

• Write as a While Program

20

input(x);

output(y);

a:=1;

while (a-5=0) {

if (a=1) then { if (A) then a:=6 else a:=2 }

else if (a=2) then { B; a:=3 }

else if (a=3) then { if (C) then a:=5 else a:=4 }

else if (a=4) then { D; a:=1 }

else if (a=5) then { E; a:=6 }

}



Corollary

• Corollary:

• Any while program can be converted into a program with one while 

statement.

21

• Proof:

• Express a given while program to a flow chart program.

• Convert the flow chart program to a while program.



Homework (1)

Write a while program of calculating the greatest common 

divisors of two natural numbers without using Euclidian 

algorithm.

• Deadline: this Saturday

• while program as text

22



Summary

• Computation = what computers can calculate

• Computable functions = mathematical functions which 

computers can calculate

• Computability = whether mathematical functions are 

computable or not

• Not all the mathematical functions on natural numbers are 

computable.

• There are mathematical functions which cannot be calculated by 

computers.

23


