

MATHEMATICS FOR INFORMATION SCIENCE

NO.1 WHILE PROGRAM

Tatsuya Hagino

hagino@sfc.keio.ac.jp

Slides URL

<https://vu5.sfc.keio.ac.jp/slides/>

Course Summary

- A program can be seen as a **mathematical function** which calculates output value for a given input. In this lecture, we will look into the property of functions which correspond to programs.
- Firstly, in order to understand what we can calculate using programs, we compare three models of programs: **recursive functions**, **Turing machines** and **lambda calculi**. We will show that those three models are equivalent.
- Secondly, we will study **complete partial order sets** which give the model of lambda calculi and programs.
- Thirdly, in order to understand data types of programs, we will look into **category theory** which is the abstraction of functions and has an ability to reveal the beauty behind data types.

Course Schedule

- 1. While Program
- 2. Primitive Recursive Function
- 3. Recursive Function
- 4. Turing Machine
- 5. Turing Machine and Computability
- 6. Lambda Calculus
- 7. Lambda Calculus and Computability
- 8. Complete Partial Ordered Set
- 9. CPO and Data Type
- 10. Continuous Function
- 11. Denotational Semantics*
- 12. Introduction to Category Theory
- 13. Limits and Adjunctions
- 14. Category Theory and Data Type
- 15. Summary*

*not in-class lecture

What is Computation?

- Computation = what computers can calculate
- Focus only on computation for Natural Numbers.
 - $N = \{0, 1, 2, 3, 4, 5, 6, 7, \dots\}$
- Computers can calculate four arithmetic operations (add, subtract, multiply, divide) on natural numbers.
 - For subtraction of a bigger number from a small number, the result is 0.
 - e.g. $3 - 5 = 0$
 - For division, the result is rounded down to natural numbers (no fraction).
 - e.g. $5 \div 2 = 2$
- What computers can do:
 - Store the result of arithmetic operations into variables (Assignment Statement).
 - Use values stored in variables in arithmetic operations.
 - Process arithmetic and others one by one based on prescribed steps.
 - Depending on values of variables, do different steps (Conditional Statement).

Computation and Algorithm

- Computation:
 - Store several natural numbers in variables
 - Process arithmetic and others based on prescribed steps.
 - The result of computation is stored in a variable.
 - Algorithm can be represented as a **flow chart**.
- Mathematically
 - Computation = what computers can calculate
 - Computers can be seen as functions.
 - What kind of functions can computer calculate?
 - Computability
- **Algorithm** = description of computation steps
 - Algorithm can be represented as a **flow chart**.

Greatest Common Divisor

- Calculate the **greatest common divisor** of two natural numbers
 - the biggest common divisor
 - the biggest number which can divide both numbers
 - for natural numbers m and n , let $\gcd(m, n)$ be the greatest common divisor
- Example: the greatest common divisor of 315 and 231
 - Divisors of 315
 -
 - Divisors of 213
 -
 - Common divisors of 315 and 231
 -
 - The greatest common divisor of 315 and 231
 -

Euclidean Algorithm

- The oldest algorithm by Euclid
 - Euclid: BC330 -- BC275
 - Euclid's Elements
- Euclidean algorithm of calculating the greatest common divisor of two natural numbers n and m :
 1. Calculate the remainder r of n divided by m .
 - $n = q \times m + r$
 - $\gcd(n, m)$ is equal to $\gcd(m, r)$
 2. Replace n, m by m, r , and do 1 again.
 3. Repeat until n becomes divisible by m .
 4. When the remainder is 0, n is the answer.
 - $\gcd(n, 0) = n$

Euclidean Algorithm Example

- Example: $\gcd(315, 231)$

- $\gcd(315, 231)$
 - $315 \div 231 = 1 \dots$
- $\gcd(315, 231) = \gcd(231, \quad)$
 - $231 \div \quad = 2 \dots$
- $\gcd(231, \quad) = \gcd(\quad, \quad)$
 - $\quad \div \quad = 1 \dots$
- $\gcd(\quad, \quad) = \gcd(\quad, \quad)$
 - $\quad \div \quad = 3 \dots 0$
- $\gcd(\quad, \quad) = \gcd(\quad, 0)$
- $\gcd(\quad, 0) =$

Euclidean Algorithm

1. Calculate the remainder r of n divided by m .
 - $\gcd(n, m) = \gcd(m, r)$
2. Replace n, m by m, r
3. Repeat until n becomes divisible by m .
4. When the remainder is 0
 - $\gcd(n, 0) = n$

$$\frac{231}{315} = \frac{231 \div}{315 \div} = \underline{\underline{\quad}}$$

Flow Chart

- Assignment

where e is an expression of variables, natural numbers and arithmetic operations.

- Conditional branch

where e_1 and e_2 are expressions of variables, natural numbers and arithmetic operations.

Input and Output

- Input

- Output

- Flow chart program

- Start from input box, connect assignment and conditional boxes and end with output box.
- Output box specifies the result of the function

$$f: \underbrace{N \times N \times \dots \times N}_{\text{input}} \rightarrow \underbrace{N}_{\text{output}}$$

A Simple Flow Chart Program

$$f: N \times N \rightarrow N \quad f(x, y) = x + y$$

input output

Flow Char of Calculating $1 + 2 + \dots + n$

$$f: N \rightarrow N$$

$$f(n) = \sum_{i=1}^n i$$

Flow Chart for Euclidean Algorithm

Write a flow chart for Euclidean algorithm.

While Program

- Programming Language
 - For computers, it is difficult to specify flow charts which are two dimensional graphs.
 - Want to express them as one dimensional language.
- While Programs
 - $\text{input}(x_1, x_2, \dots, x_n)$
 - $\text{output}(y)$
 - $x := e$
 - $\{P_1; P_2; \dots; P_n\}$
 - $\text{if } (e_1 = e_2) \text{ then } P \text{ else } Q$
 - $\text{while } (e_1 = e_2) P$

Example: While Program

- Calculating $1 + 2 + \dots + n$

```
input(n);
s := 0;
i := 1;
while (i <= n) {
    s := s + i;
    i := i + 1
}
output(s);
```

```
input(n);
s := 0;
i := 1;
while (1 - (i - n) = 1) {
    s := s + i;
    i := i + 1
}
output(s);
```

Example of While Program

- Write a while program for Euclidean algorithm.

```
input(n,m) ;
```

```
output(n) ;
```

Flow Chart and While Program

- Theorem:
 - Any while program can be expressed as a flow chart program.
 - Any flow chart program can be expressed as a while program.
- Proof:
 - It is obvious that any while program can be expressed as a flow chart program.
 - Inverse
 - Put a number to each box (except input box) in the flow chart.
 - Introduce a new variable to manage the box number.
 - Use box numbers instead of arrows in the flow chart.
 - Write a while program which manages the box number.

Example of conversion

Put a number
to each box

Example of conversion

Introduce a new variable
Use box number
to connect

Example of Conversion

- Write as a While Program

```
input(x);

a:=1;
while (a-5=0) {
    if (a=1) then { if (A) then a:=6 else a:=2 }
    else if (a=2) then { B; a:=3 }
    else if (a=3) then { if (C) then a:=5 else a:=4 }
    else if (a=4) then { D; a:=1 }
    else if (a=5) then { E; a:=6 }
}
output(y);
```

Corollary

- Corollary:
 - Any while program can be converted into a program with one while statement.
- Proof:
 - Express a given while program to a flow chart program.
 - Convert the flow chart program to a while program.

Homework (1)

Write a while program of calculating the greatest common divisors of two natural numbers **without** using Euclidian algorithm.

- Deadline: this Saturday
 - while program as text

Summary

- **Computation** = what computers can calculate
- **Computable functions** = mathematical functions which computers can calculate
- **Computability** = whether mathematical functions are computable or not
 - Not all the mathematical functions on natural numbers are computable.
 - There are mathematical functions which cannot be calculated by computers.