MATHEMATICS FOR INFORMATION SCIENCE
NO.1 WHILE PROGRAM

Tatsuya Hagino
hagino@sfc.keio.ac.jp

Slides URL

https://vu5.sfc.kelo.ac.jp/slide/

Course Summary

- A program can be seen as a mathematical function which
calculates output value for a given input. In this lecture, we will
look into the property of functions which correspond to
programs.

- Firstly, in order to understand what we can calculate using programs,
we compare three models of programs: recursive functions, Turing
machines and lambda calculi. We will show that those three models
are equivalent.

- Secondly, we will study complete partial order sets which give
the model of lambda calculi and programs.

- Thirdly, in order to understand data types of programs, we will
look into category theory which is the abstraction of functions
and has an ability to reveal the beauty behind data types.

Course Schedule

1.While Program 8. Complete Partial
Ordered Set
2. Primitive Recursive 9. CPO and Data Type
Function 10. Continuous Function
3.Recursive Function 11. Denotational
Semantics*
4. Turing Machine |
5. Turing Machine and 12. Introduction to
Computability Category Theory
13. Limits and Adjunctions
6.Lambda Calculus 14. Category Theory and

7.Lambda Calculus and Data Type*
Computability 15. Summary

*not in-class lecture

. N
What is Computation?

- Computation = what computers can calculate

- Focus only on computation for Natural Numbers.
- N={0,1,2,3,4,5,6,7,-- }

- Computers can calculate four arithmetic operations (add, subtract,
multiply, divide) on natural numbers.

- For subtraction of a bigger number from a small number, the result is 0.

-eg.3—-5=0
- For division, the result is rounded down to natural numbers (no fraction).
ceg.5+2=2

- What computers can do:
- Store the result of arithmetic operations into variables (Assignment Statement).

- Use values stored in variables in arithmetic operations.
- Process arithmetic and others one by one based on prescribed steps.

- Depending on values of variables, do different steps (Conditional Statement).

Computation and Algorithm

- Computation:
- Store several natural numbers in variables
- Process arithmetic and others based on prescribed steps.
- The result of computation is stored in a variable.
- Algorithm can be represented as a flow chart.

- Mathematically
- Computation = what computers can calculate
- Computers can be seen as functions.
- What kind of functions can computer calculate?
- Computability

- Algorithm = description of computation steps
- Algorithm can be represented as a flow chart.

. S
Greatest Common Divisor

- Calculate the greatest common divisor of two natural numbers

- the biggest common divisor
- the biggest number which can divide both numbers

- for natural numbers m and n, let gcd(m, n) be the greatest common
divisor

- Example: the greatest common divisor of 315 and 231
- Divisors of 315

- Divisors of 213
- Common divisors of 315 and 231

- The greatest common divisor of 315 and 231

Euclidean Algorithm

- The oldest algorithm by Euclid
- Euclid: BC330 -- BC275
- Euclid's Elements

- Euclidean algorithm of caluculating the greatest common
divisor of two natural numbers n and m:

— 1. Calculate the remainder r of n divided by m.
n=gXm+r
- gcd(n,m) is equal to gcd(m, r)

—— 2. Replace n,m by m,r, and do 1 again.
3. Repeat until n becomes divisible by m.

4. When the remainder is O, n IS the answer.
« gcd(n,0) =n

- Example: gcd(315,231)
- gcd(315,231)
- 315+231=1--
- gcd(315,231) = ged(231,)

« 231+ =2--
- gcd(231,)=gcd(,)
= =1
-~ ged(,) =ged(,)
~ =3...0

- ged(,) =gcd(,0)
- ged(,0) =

Euclidean Algorithm Example

Euclidean Algorithm

1. Calculate the remainder r of n
divided by m.
« gcd(n,m) = gcd(m, 1)
2. Replace n,m by m,r
3. Repeat until n becomes divisible
by m.
4. When the remainder is 0
* gcd(n,0)=n

231 231+
315 315+

Flow Chart

- Assignment

where e is an expression of variables, natural numbers and
arithmetic operations.

- Conditional branch

o>

yes

V
where e, and e, are expressions of variables, natural numbers and
arithmetic operations.

Input and Output

- Input
input(xq, x,, -, x)
- Output l

output(y)

- Flow chart program

- Start from input box, connect assignment and conditional boxes
and end with output box.

- Output box specifies the result of the function
ﬁNxNxmeaN

—

input output

A Simple Flow Chart Program

input(x, y)

Z:=x+tYy

output(z)
f:NxN—>L1:/J fx,y)=x+y

input output

Flow Char of Calculating1 + 2+ -+ n

input(n) f:N—>N
A\ n
s: =0 f(n) = zl
i=1
\4
i:=1
y
i=n+1 =
no
Ss:=s+1
\
A output(s)
i:=14+1

Flow Chart for Euclidean Algorithm

Write a flow chart for
Euclidean algorithm.

input(n, m)

!

output(n)

While Program

- Programming Language
- For computers, it is difficult to specify flow charts which are two
dimensional graphs.
- Want to express them as one dimensional language.

- While Programs
« input(xq, X, **, X5p)
- output(y)
e X.=e
* {Py; P o5 Py}
- if (e; = e,) then P else Q
- while (e; = e,) P

Example: While Program

- Calculating1+2+:--4+n

input(n) ;

s :=0;

i:=1;

while (i <= n) {
s :=s + 1i;
i=1i+1

}
output (s) ;

input(n) ;

s :=0;

i:=1;

while (1 - (i - n)
s :=s + 1i;
i:=3i+1

}

output (s) ;

1)

{

Example of While Program

- Write a while program for Euclidean algorithm.

input(n,m) ;

output (n) ;

Flow Chart and While Program

- Theorem:
- Any while program can be expressed as a flow chart program.
- Any flow chart program can be expressed as a while program.

- Proof:

- It is obvious that any while program can be expressed as a flow
chart program.

- Inverse
- Put a number to each box (except input box) in the flow chart.
- Introduce a new variable to manage the box number.
- Use box numbers instead of arrows in the flow chart.
- Write a while program which manages the box number.

Example of conversion

input(x)

<V

no

yes

V

output(y)

4D
N\

Put a number
to each box

yes

Example of conversion

Introduce a new variable input(x)
_ Use box number
input(x) to connect
8%
es
14 4
a:===6 A
no
4D 2 B
N a:=2
no
a = 3 A
yes
5> E
a:=>5 A
V>
Q)utput(y) 2= 4 1
a = 1 \
a==6

output(y)

Example of Conversion

- Write as a While Program

input (x) ;

a:=1;
while (a-5=0) {
if (a=1) then { if (A) then a:=6 else a:=2 }
else if (a=2) then { B; a:=3 }
else if (a=3) then { if (C) then a:=5 else a:=4 }
else if (a=4) then { D; a:=1 }
else if (a=5) then { E; a:=6 }

output (y) ;

Corollary

- Corollary:

- Any while program can be converted into a program with one while
statement.

- Proof:
- Express a given while program to a flow chart program.
- Convert the flow chart program to a while program.

Homework (1)

Write a while program of calculating the greatest common
divisors of two natural numbers without using Euclidian
algorithm.

- Deadline: this Saturday
- while program as text

Summary

- Computation = what computers can calculate

- Computable functions = mathematical functions which
computers can calculate

- Computability = whether mathematical functions are

computable or not
- Not all the mathematical functions on natural numbers are
computable.
- There are mathematical functions which cannot be calculated by
computers.

