
MATHEMATICS FOR INFORMATION SCIENCE

NO.3 RECURSIVE FUNCTION

Tatsuya Hagino

hagino@sfc.keio.ac.jp

1

https://vu5.sfc.keio.ac.jp/slide/

Slides URL

So far
• Computability

• While program and flow chart are equivalent.

• Primitive recursive function

• 𝑧𝑒𝑟𝑜 ∶ 𝑁0 → 𝑁 𝑧𝑒𝑟𝑜() = 0

• 𝑠𝑢𝑐 ∶ 𝑁 → 𝑁 𝑠𝑢𝑐(𝑥) = 𝑥 + 1

• 𝜋𝑖
𝑛 ∶ 𝑁𝑛 → 𝑁 𝜋𝑖

𝑛 𝑥1, … , 𝑥𝑛 = 𝑥𝑖
• primitive recursion

• 𝑓 𝑥1, … , 𝑥𝑛, 𝑧𝑒𝑟𝑜() = 𝑔(𝑥1, … , 𝑥𝑛)

• 𝑓 𝑥1, … , 𝑥𝑛, 𝑠𝑢𝑐 𝑦 = ℎ(𝑥1, … , 𝑥𝑛, 𝑦, 𝑓 𝑥1, … , 𝑥𝑛, 𝑦)

• composition of primitive recursive functions

• 𝑓 𝑥1, , … , 𝑥𝑛 = 𝑔(ℎ1 𝑥1, , … , 𝑥𝑛 , … , ℎ𝑚 𝑥1, , … , 𝑥𝑛)

• Example of primitive recursive functions:

• one, pred, add, sub, mul, div, ...

2

Compute Primitive Recursive Functions

• Theorem:

• Primitive recursive functions are computable.

3

input()

𝑧 ≔ 0

output(𝑧)

𝑧𝑒𝑟𝑜

input(𝑥)

𝑥 ≔ 𝑥 + 1

output(𝑥)

𝑠𝑢𝑐

input(𝑥1, 𝑥2, ⋯ , 𝑥𝑛)

output(𝑥𝑖)

𝜋𝑖
𝑛

• Proof:

• 𝑧𝑒𝑟𝑜, 𝑠𝑢𝑐, 𝜋𝑖
𝑛 are computable.

Compute Primitive Recursive Functions

• A composition of primitive recursive functions are computable.

𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑔 ℎ1 𝑥1, 𝑥2, … , 𝑥𝑛 , … , ℎ𝑚 𝑥1, 𝑥2, … , 𝑥𝑛

4

input(𝑥1, 𝑥2, ⋯ , 𝑥𝑛)

𝑧 ≔ 𝑔(𝑦1, … , 𝑦𝑚)

𝑦1 ≔ ℎ1 𝑥1, 𝑥2, … , 𝑥𝑛

output(𝑧)

𝑦2 ≔ ℎ2 𝑥1, 𝑥2, … , 𝑥𝑛

𝑦𝑚 ≔ ℎ𝑚 𝑥1, 𝑥2, … , 𝑥𝑛

Compute Primitive Recursive Functions

• A function defined by a primitive recursion is computable.

• 𝑓 𝑥1, … , 𝑥𝑛, 𝑧𝑒𝑟𝑜() = 𝑔(𝑥1, … , 𝑥𝑛)

• 𝑓 𝑥1, … , 𝑥𝑛, 𝑠𝑢𝑐 𝑦 = ℎ(𝑥1, … , 𝑥𝑛, 𝑦, 𝑓 𝑥1, … , 𝑥𝑛, 𝑦)

5

input(𝑥1, 𝑥2, ⋯ , 𝑥𝑛, 𝑦)

𝑓 ≔ 𝑔(𝑥1, … , 𝑥𝑛)

𝑧 ≔ 0

𝑧 = 𝑦
yes

no

𝑓 ≔ ℎ(𝑥1, … , 𝑥𝑛, 𝑧, 𝑓)

𝑧 ≔ 𝑧 + 1

output(𝑓)

Is computable function always primitive recursive?

• Primitive recursive functions are total.

• total = for any input, there is output.

6

• There is a total function which is not
primitive recursive:
• Ackerman function 𝐴:𝑁2 → 𝑁

• 𝐴 0, 𝑦 = 𝑠𝑢𝑐(𝑦)

• 𝐴 𝑠𝑢𝑐(𝑥), 0 = 𝐴 𝑥, 𝑠𝑢𝑐(0)

• 𝐴 𝑠𝑢𝑐(𝑥), 𝑠𝑢𝑐(𝑦) = 𝐴 𝑥, 𝐴 𝑠𝑢𝑐(𝑥), 𝑦

• Computable functions may not be total,

but partial.

• partial = for some input, there is no output.

• The set of computable functions is larger

than that of primitive recursive functions.

Minimization Operator

• Definition:
• For predicate 𝑝:𝑁𝑛+1 → True, False

𝑓(𝑥1, … , 𝑥𝑛) = min 𝑦 𝑝 𝑥1, … , 𝑥𝑛, 𝑦 is True)

7

• 𝑓(𝑥1, … , 𝑥𝑛) gives the smallest 𝑦 which makes 𝑝(𝑥1, … , 𝑥𝑛, 𝑦) true.

• 𝑓(𝑥1, … , 𝑥𝑛) is called minimization function of 𝑝(𝑥1, … , 𝑥𝑛, 𝑦) and is written as:

𝜇𝑦 𝑝 𝑥1, … , 𝑥𝑛, 𝑦

• 𝜇 is know as minimization operator.

• Example:

• 𝑓 𝑥 = 𝜇𝑦 𝑥 = 𝑦 × 2

• 𝑔 𝑥 = 𝜇𝑦 𝑥 = 𝑦2

𝑓 2 = 𝑓 3 =

𝑔 4 = 𝑔 5 =

Recursive Function

• Recursive Functions:

• Primitive recursive functions

• Minimization functions for primitive recursive predicates

• Composition of recursive functions

• Functions defined by primitive recursion with recursive functions

8

• In short, recursive function is:

• primitive recursive function + minimization operator

Recursive ⇒ Computable
• Theorem: Recursive functions are computable.

• Proof:
• Only need to show about the minimization operator.

9

𝑓 𝑥1, … , 𝑥𝑛 = 𝜇𝑦 𝑝 𝑥1, … , 𝑥𝑛, 𝑦

input(𝑥1, 𝑥2, ⋯ , 𝑥𝑛)

𝑦 ≔ 0

𝑧 = 0

yes

no

𝑦 ≔ 𝑦 + 1
output(𝑦)

𝑧 ≔ 𝐶𝑝(𝑥1, … , 𝑥𝑛, 𝑦)

Gödel Function

• Gödel function 𝐺:𝑁𝑛 → 𝑁 and its inverse functions
𝐺1: 𝑁 → 𝑁,… , 𝐺𝑛: 𝑁 → 𝑁 must satisfy:
• 𝐺 is a one-to-one function,

• 𝐺𝑖 𝐺 𝑥1, … , 𝑥𝑛 = 𝑥𝑖, and

• 𝐺, 𝐺1, … , 𝐺𝑛 are primitive recursive.

10

• 𝐺 𝑥1, … , 𝑥𝑛 is called Gödel number of 𝑥1, … , 𝑥𝑛.

• Example:
• 𝐺 𝑥1, 𝑥2, … , 𝑥𝑛 = 2𝑥1 × 3𝑥2 ×⋯× 𝑝𝑛

𝑥𝑛 (where 𝑝𝑛 is the 𝑛th prime number)

• 𝐺1 𝑥 = 𝑥 − 𝜇𝑦<𝑥 divisible 𝑥, 2𝑥−𝑦

• 𝐺2 𝑥 = 𝑥 − 𝜇𝑦<𝑥 divisible 𝑥, 3𝑥−𝑦

⋮

• 𝐺𝑛 𝑥 = 𝑥 − 𝜇𝑦<𝑥 divisible 𝑥, 𝑝𝑛
𝑥−𝑦

Computable⇒ Recursive

• Theorem: Computable functions are recursive.

11

• Proof:
• Any while program can be converted into the following format:

input(𝑥1, … , 𝑥𝑛);

𝑎 ≔ 1;

while (𝑎 − 𝑘 = 0) {

if (𝑎 = 1) 𝑃1;

else if (𝑎 = 2) 𝑃2;

else if (𝑎 = 3) 𝑃3;

⋮

else if (𝑎 = 𝑘) 𝑃𝑘;

}

output(𝑦)

where 𝑃𝑖 is either an assignment or a conditional statement.

Proof (cont.)
• Let 𝑎1, … , 𝑎𝑛 be all the variables in the program.

• Let 𝑎1 be the box number variable 𝑎.

• Use 𝑏 = 𝐺 𝑎1, … , 𝑎𝑛 instead of individual variables.

12

• If 𝑃𝑖 is an assignment statement: 𝑎𝑚 ≔ 𝑓 𝑎1, … , 𝑎𝑛 ; 𝑎 ≔ 𝑙

• 𝑏 ≔ 𝐺 𝑙, 𝐺2 𝑏 ,… , 𝑓 𝐺1 𝑏 ,… , 𝐺𝑛 𝑏 ,… , 𝐺𝑛 𝑏

• If 𝑃𝑖 is a conditional statement: if (𝑝(𝑎1, … , 𝑎𝑛)) 𝑎 ≔ 𝑙 else 𝑎 ≔ 𝑚

• 𝑏 ≔ 𝐺 𝐶𝑝 𝐺1 𝑏 , … , 𝐺𝑛 𝑏 × 𝑙 + 1 − 𝐶𝑝 𝐺1 𝑏 ,… , 𝐺𝑛 𝑏 × 𝑚, 𝐺2 𝑏 , … , 𝐺𝑛 𝑏

• 𝑃𝑖 can be expressed as a simple assignment statement

• 𝑏 ≔ 𝑓𝑖 𝑏

• where 𝑓𝑖 is a primitive recursive function.

• Combining section of 𝑃𝑖 depending on 𝑎 can also be expressed as a
single assignment statement:

• 𝑏 ≔ σ𝑖=1
𝑘 𝐶= 𝐺1 𝑏 , 𝑖 × 𝑓𝑖 𝑏

Proof (cont.)

• The program can be converted into the following:

13

input(𝑥1, 𝑥2, ⋯ , 𝑥𝑛)

𝑏 ≔ 𝐺(1, 𝑥1, … , 𝑥𝑛, 0, … , 0)

𝐺1 𝑏 − 𝑘 = 0
yes

no

𝑦 ≔ 𝐺𝑚(𝑏)

output(𝑦)

𝑏 ≔ 𝑓(𝑏)

Proof (cont.)
• Let 𝑓♯ 𝑏, 𝑛 = 𝑓 𝑓 𝑓 ⋯𝑓 𝑏

• Apply 𝑓 to 𝑏 𝑛 times.

• Can be defined by primitive recursion:

• 𝑓♯ 𝑏, 0 = 𝑏

• 𝑓♯ 𝑏, 𝑠𝑢𝑐(𝑛) = 𝑓 𝑓♯ 𝑏, 𝑛

14

• The loop can be expressed using minimization operator.

• ℎ 𝑏 = 𝑓♯ 𝑏, 𝜇𝑛 𝐺1 𝑓♯ 𝑏, 𝑛 > 𝑘

• Therefore, the program calculates the following function:

• 𝐺𝑚 ℎ 𝐺 1, 𝑥1, … , 𝑥𝑛, 0, … , 0

• This is a recursive function. (QED)

Lemma
Any recursive function can be expressed as

𝑓 𝑥1, … , 𝑥𝑛, 𝜇𝑦 𝑝 𝑥1, … , 𝑥𝑛, 𝑦

where 𝑓 is a primitive recursive function and 𝑝 is a primitive
recursive predicate.

15

• only one 𝜇 is necessary

• others are primitive recursive

Mathematical Induction

• In order to show 𝑃(𝑥) holds for any natural number 𝑥,

show the following two things:

• (base) It holds for 𝑥 = 0

• (induction) Assuming it holds for 𝑥 = 𝑛, it also holds 𝑥 = 𝑠𝑢𝑐(𝑛)

16

𝑃 0 𝑃 𝑛 ⊃ 𝑃 𝑠𝑢𝑐 𝑛

∀𝑥 ∈ 𝑁 𝑃(𝑥)

• This is called mathematical induction.

• 𝑃(𝑥) holds for natural number 𝑥 by mathematical induction.

Show 𝑎𝑑𝑑(0, 𝑥) = 𝑥

Theorem： 𝑎𝑑𝑑 0, 𝑥 = 𝑥

17

• Proof：
(base) If 𝑥 = 0, from the definition 𝑎𝑑𝑑 0,0 = 0. Therefore, it holds.

(induction) Assume it holds for 𝑥 = 𝑛. Then 𝑎𝑑𝑑(0, 𝑛) = 𝑛 ．

If 𝑥 = 𝑠𝑢𝑐(𝑛),
𝑙ℎ𝑠 = 𝑎𝑑𝑑 0, 𝑠𝑢𝑐 𝑛

= 𝑠𝑢𝑐 𝑎𝑑𝑑 0, 𝑛 (∵ definition of 𝑎𝑑𝑑)

= 𝑠𝑢𝑐 𝑛 (∵ assumtion)
= 𝑟ℎ𝑠

Therefore 𝑎𝑑𝑑(0, 𝑥) = 𝑥 holds for any natural number 𝑥.

Homework

• Show 𝑚𝑢𝑙 1, 𝑥 = 𝑥 by mathematical induction on 𝑥.

where 1 = 𝑠𝑢𝑐(0).

18

• (base case) Show it for 𝑥 = 0.

• (induction) Assuming it holds for 𝑥 = 𝑛, show it also holds for
𝑥 = 𝑠𝑢𝑐(𝑛).

Summary

• Primitive recursive functions:
• Summation and Product

• Primitive recursive predicate

• division is primitive recursive

• 𝑛th prime number is primitive recursive

• Recursive functions:
• Primitive recursive functions

• Minimization operator

• Any recursive function is computable.

• Any computable function is recursive.

19

flow chart

while program

recursive

function

