

MATHEMATICS FOR INFORMATION SCIENCE

NO.3 RECURSIVE FUNCTION

Tatsuya Hagino

hagino@sfc.keio.ac.jp

Slides URL

<https://vu5.sfc.keio.ac.jp/slides/>

So far

- Computability
 - While program and flow chart are equivalent.
- Primitive recursive function
 - $zero : N^0 \rightarrow N$ $zero() = 0$
 - $suc : N \rightarrow N$ $suc(x) = x + 1$
 - $\pi_i^n : N^n \rightarrow N$ $\pi_i^n(x_1, \dots, x_n) = x_i$
 - primitive recursion
 - $f(x_1, \dots, x_n, zero()) = g(x_1, \dots, x_n)$
 - $f(x_1, \dots, x_n, suc(y)) = h(x_1, \dots, x_n, y, f(x_1, \dots, x_n, y))$
 - composition of primitive recursive functions
 - $f(x_1, \dots, x_n) = g(h_1(x_1, \dots, x_n), \dots, h_m(x_1, \dots, x_n))$
- Example of primitive recursive functions:
 - one, pred, add, sub, mul, div, ...

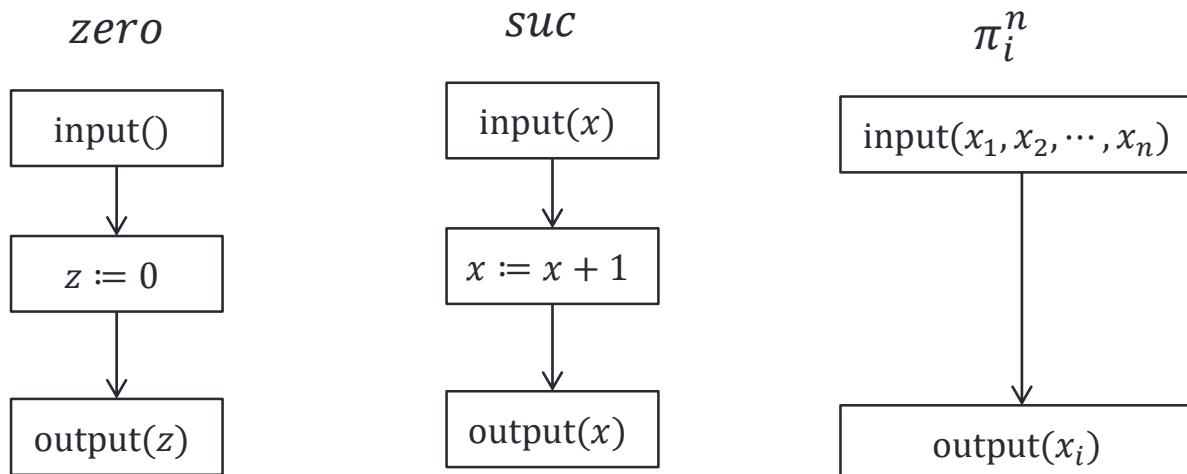
Compute Primitive Recursive Functions

- **Theorem:**

- Primitive recursive functions are computable.

- **Proof:**

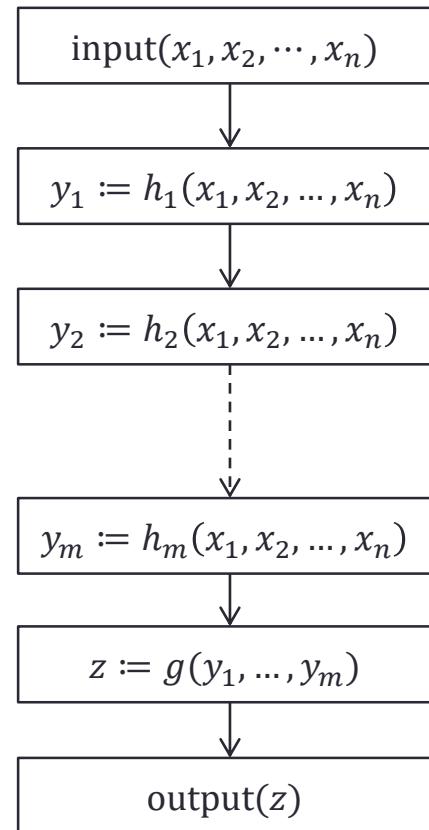
- $\text{zero}, \text{suc}, \pi_i^n$ are computable.



Compute Primitive Recursive Functions

- A composition of primitive recursive functions are computable.

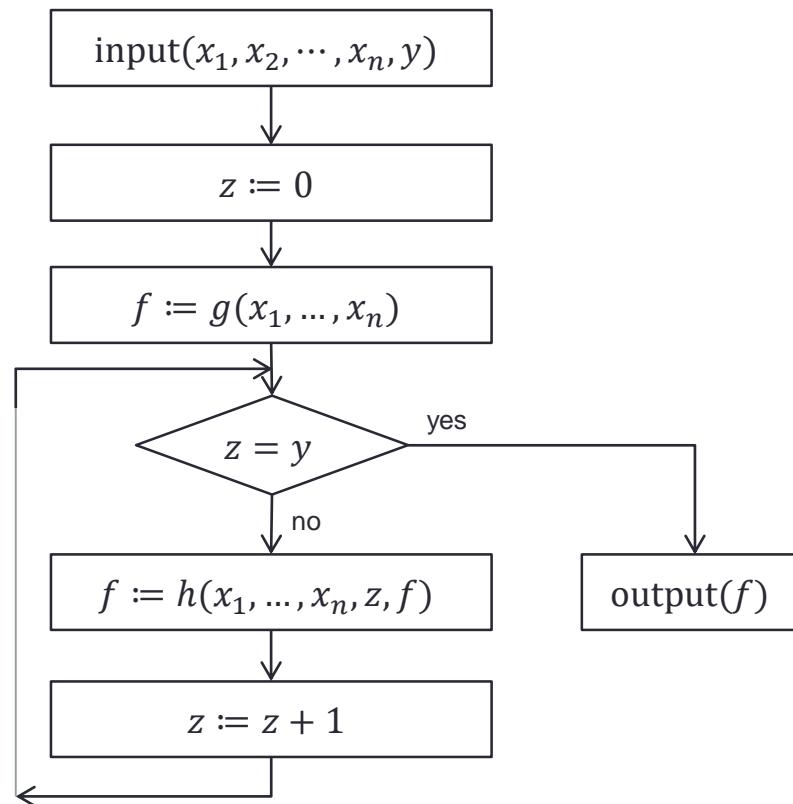
$$f(x_1, x_2, \dots, x_n) = g(h_1(x_1, x_2, \dots, x_n), \dots, h_m(x_1, x_2, \dots, x_n))$$



Compute Primitive Recursive Functions

- A function defined by a primitive recursion is computable.

- $f(x_1, \dots, x_n, \text{zero}()) = g(x_1, \dots, x_n)$
- $f(x_1, \dots, x_n, \text{suc}(y)) = h(x_1, \dots, x_n, y, f(x_1, \dots, x_n, y))$



Is computable function always primitive recursive?

- Primitive recursive functions are total.
 - **total** = for any input, there is output.
- Computable functions may not be total, but partial.
 - **partial** = for some input, there is no output.
- The set of computable functions is larger than that of primitive recursive functions.
- There is a total function which is not primitive recursive:
 - **Ackerman function** $A: N^2 \rightarrow N$
 - $A(0, y) = suc(y)$
 - $A(suc(x), 0) = A(x, suc(0))$
 - $A(suc(x), suc(y)) = A(x, A(suc(x), y))$

Minimization Operator

- Definition:

- For predicate $p: N^{n+1} \rightarrow \{\text{True}, \text{False}\}$

$$f(x_1, \dots, x_n) = \min(\{y \mid p(x_1, \dots, x_n, y) \text{ is True}\})$$

- $f(x_1, \dots, x_n)$ gives the smallest y which makes $p(x_1, \dots, x_n, y)$ true.

- $f(x_1, \dots, x_n)$ is called **minimization function** of $p(x_1, \dots, x_n, y)$ and is written as:

$$\mu_y(p(x_1, \dots, x_n, y))$$

- μ is known as **minimization operator**.

- Example:

- $f(x) = \mu_y(x = y \times 2)$ $f(2) =$ $f(3) =$

- $g(x) = \mu_y(x = y^2)$ $g(4) =$ $g(5) =$

Recursive Function

- **Recursive Functions:**
 - Primitive recursive functions
 - **Minimization** functions for primitive recursive predicates
 - Composition of recursive functions
 - Functions defined by primitive recursion with recursive functions
- In short, recursive function is:
 - primitive recursive function + **minimization operator**

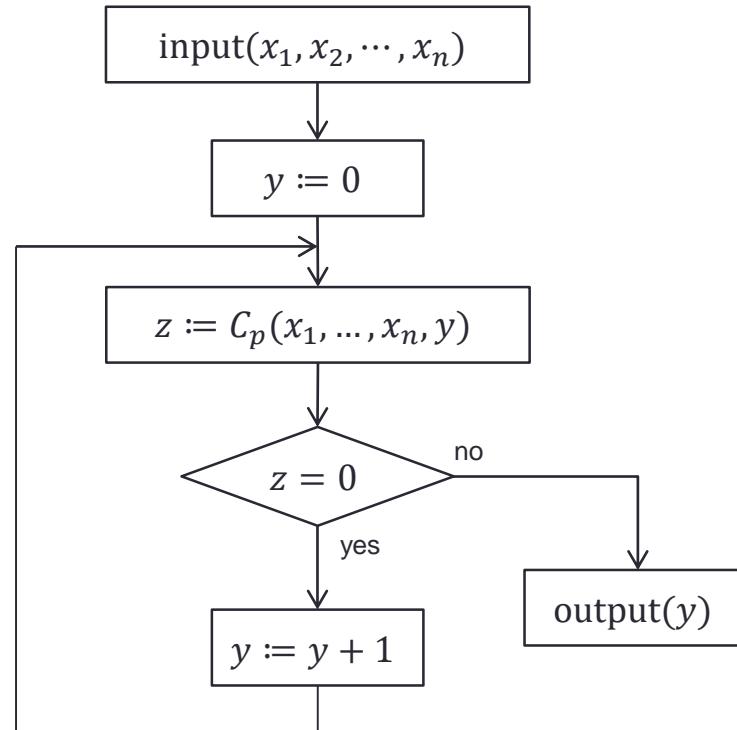
Recursive \Rightarrow Computable

- **Theorem:** Recursive functions are computable.

- **Proof:**

- Only need to show about the minimization operator.

$$f(x_1, \dots, x_n) = \mu_y(p(x_1, \dots, x_n, y))$$



Gödel Function

- **Gödel function** $G: N^n \rightarrow N$ and its inverse functions

$G_1: N \rightarrow N, \dots, G_n: N \rightarrow N$ must satisfy:

- G is a one-to-one function,
- $G_i(G(x_1, \dots, x_n)) = x_i$, and
- G, G_1, \dots, G_n are primitive recursive.

- $G(x_1, \dots, x_n)$ is called **Gödel number** of x_1, \dots, x_n .

- Example:

- $G(x_1, x_2, \dots, x_n) = 2^{x_1} \times 3^{x_2} \times \dots \times p_n^{x_n}$ (where p_n is the n th prime number)
- $G_1(x) = x - \mu_{y < x}(\text{divisible}(x, 2^{x-y}))$
- $G_2(x) = x - \mu_{y < x}(\text{divisible}(x, 3^{x-y}))$
- ⋮
- $G_n(x) = x - \mu_{y < x}(\text{divisible}(x, p_n^{x-y}))$

Computable \Rightarrow Recursive

- **Theorem:** Computable functions are recursive.

- **Proof:**

- Any while program can be converted into the following format:

```
input( $x_1, \dots, x_n$ );  
 $a := 1$ ;  
while ( $a - k = 0$ ) {  
    if ( $a = 1$ )  $P_1$ ;  
    else if ( $a = 2$ )  $P_2$ ;  
    else if ( $a = 3$ )  $P_3$ ;  
    :  
    else if ( $a = k$ )  $P_k$ ;  
}  
output( $y$ )
```

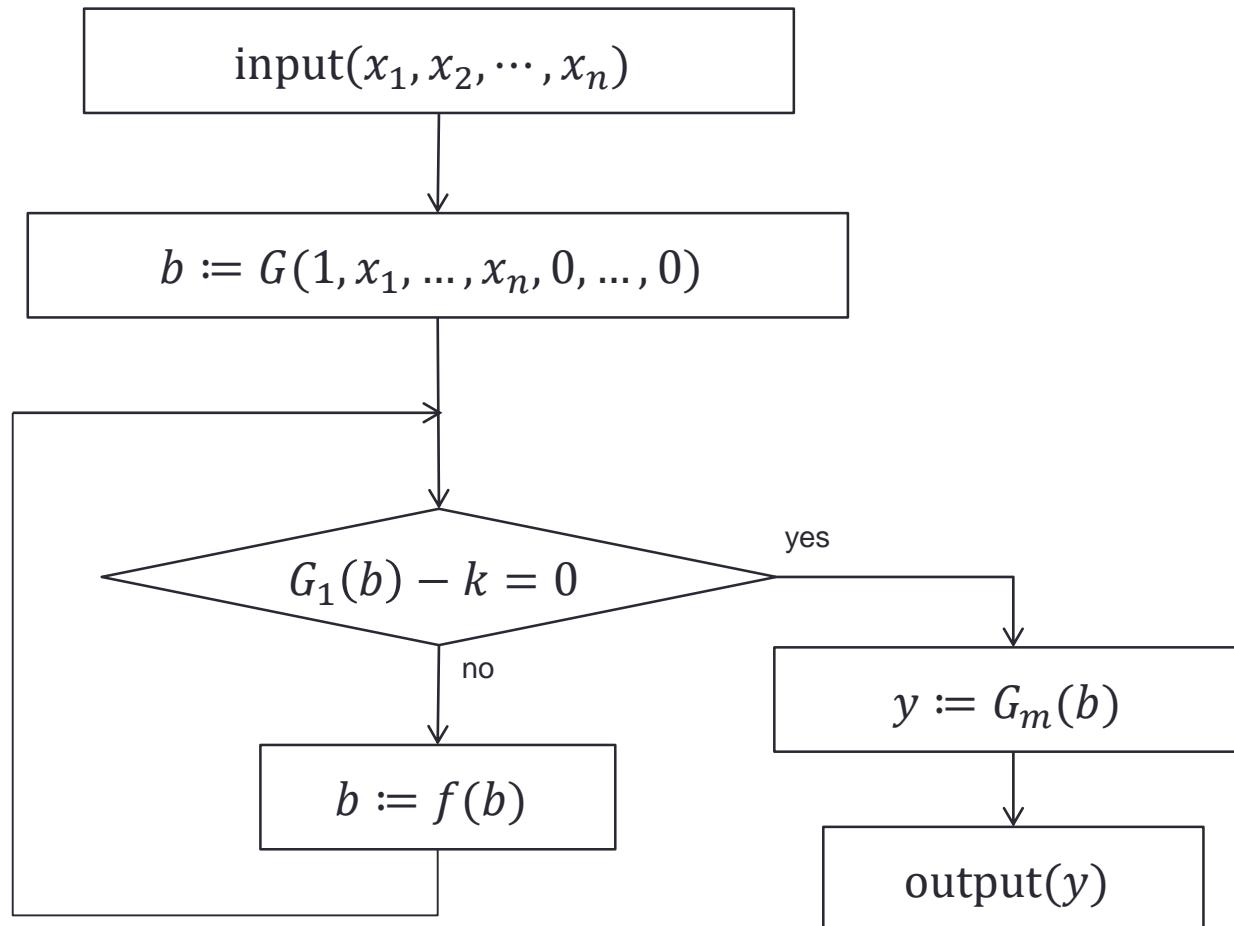
where P_i is either an assignment or a conditional statement.

Proof (cont.)

- Let a_1, \dots, a_n be all the variables in the program.
 - Let a_1 be the box number variable a .
 - Use $b = G(a_1, \dots, a_n)$ instead of individual variables.
- If P_i is an **assignment** statement: $a_m := f(a_1, \dots, a_n); a := l$
 - $b := G(l, G_2(b), \dots, f(G_1(b), \dots, G_n(b)), \dots, G_n(b))$
- If P_i is a **conditional** statement: $\text{if } (p(a_1, \dots, a_n)) \text{ } a := l \text{ else } a := m$
 - $b := G\left(C_p(G_1(b), \dots, G_n(b)) \times l + (1 - C_p(G_1(b), \dots, G_n(b))) \times m, G_2(b), \dots, G_n(b)\right)$
- P_i can be expressed as a simple assignment statement
 - $b := f_i(b)$
 - where f_i is a primitive recursive function.
- Combining section of P_i depending on a can also be expressed as a single assignment statement:
 - $b := \sum_{i=1}^k C_=(G_1(b), i) \times f_i(b)$

Proof (cont.)

- The program can be converted into the following:



Proof (cont.)

- Let $f^{\#}(b, n) = f(f(f(\dots f(b))))$
 - Apply f to b n times.
 - Can be defined by primitive recursion:
 - $f^{\#}(b, 0) = b$
 - $f^{\#}(b, suc(n)) = f(f^{\#}(b, n))$
- The loop can be expressed using minimization operator.
 - $h(b) = f^{\#}\left(b, \mu_n \left(G_1\left(f^{\#}(b, n)\right) > k\right)\right)$
- Therefore, the program calculates the following function:
 - $G_m\left(h\left(G(1, x_1, \dots, x_n, 0, \dots, 0)\right)\right)$
- This is a recursive function. (QED)

Lemma

Any recursive function can be expressed as

$$f(x_1, \dots, x_n, \mu_y(p(x_1, \dots, x_n, y)))$$

where f is a primitive recursive function and p is a primitive recursive predicate.

- only one μ is necessary
- others are primitive recursive

Mathematical Induction

- In order to show $P(x)$ holds for any natural number x , show the following two things:
 - (base) It holds for $x = 0$
 - (induction) Assuming it holds for $x = n$, it also holds $x = \text{suc}(n)$
- This is called mathematical induction.
 - $P(x)$ holds for natural number x by mathematical induction.

$$\frac{P(0) \quad P(n) \supset P(\text{suc}(n))}{\forall x \in N \ P(x)}$$

Show $add(0, x) = x$

Theorem: $add(0, x) = x$

- Proof:

(base) If $x = 0$, from the definition $add(0, 0) = 0$. Therefore, it holds.

(induction) Assume it holds for $x = n$. Then $add(0, n) = n$.

If $x = suc(n)$,

$$lhs = add(0, suc(n))$$

$$= suc(add(0, n)) \quad (\because \text{definition of } add)$$

$$= suc(n) \quad (\because \text{assumption})$$

$$= rhs$$

Therefore $add(0, x) = x$ holds for any natural number x .

Homework

- Show $\text{mul}(1, x) = x$ by mathematical induction on x .
where $1 = \text{suc}(0)$.
- (base case) Show it for $x = 0$.
- (induction) Assuming it holds for $x = n$, show it also holds for $x = \text{suc}(n)$.

Summary

- Primitive recursive functions:
 - Summation and Product
 - Primitive recursive predicate
 - division is primitive recursive
 - n th prime number is primitive recursive
- Recursive functions:
 - Primitive recursive functions
 - Minimization operator
- Any recursive function is computable.
- Any computable function is recursive.

