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So far
• Computation

• flow chart program
• while program
• recursive function

• primitive recursive function
• minimization operator
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flow chart

while program

recursive function

Turing machine

lambda calculus



Finite State Automata
• A Finite State Automaton 𝑀𝑀 = (𝑄𝑄, Σ, 𝛿𝛿, 𝑞𝑞0, 𝐹𝐹)
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• 𝑄𝑄: a finite, non-empty set of states

• 𝛿𝛿: a state-transition function, 𝛿𝛿:𝑄𝑄 × Σ → 𝑄𝑄

• Σ: the input alphabet (a finite, non-empty set of symbols)

• 𝑞𝑞0: an initial state, an element in 𝑄𝑄

• 𝐹𝐹: a set of final states, a (possibly empty) subset of 𝑄𝑄



FA Example (1)
• An automaton which checks whether '1' appears even

number of times in a string of '0' and '1'.

𝑀𝑀1 = 𝑞𝑞0, 𝑞𝑞1 , 0,1 , 𝛿𝛿1, 𝑞𝑞0, 𝑞𝑞0
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𝛿𝛿1: 𝑞𝑞0, 𝑞𝑞1 × 0,1 → {𝑞𝑞0, 𝑞𝑞1}

𝛿𝛿1 0 1

𝑞𝑞0 𝑞𝑞0 𝑞𝑞1

𝑞𝑞1 𝑞𝑞1 𝑞𝑞0
𝑞𝑞1𝑞𝑞0

1

1

00
𝛿𝛿1 𝑞𝑞0, 0 = 𝑞𝑞0
𝛿𝛿1 𝑞𝑞0, 1 = 𝑞𝑞1
𝛿𝛿1 𝑞𝑞1, 0 = 𝑞𝑞1
𝛿𝛿1 𝑞𝑞1, 1 = 𝑞𝑞0

• Define 𝛿𝛿1 as follows:



State Transition
• Input "0101" to 𝑀𝑀1

0. The initial state is 𝑞𝑞0
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𝑞𝑞1𝑞𝑞0

1

1

00

𝑞𝑞1𝑞𝑞0

1

1

00

𝑞𝑞1𝑞𝑞0

1

1

00

𝑞𝑞1𝑞𝑞0

1

1

00

𝑞𝑞1𝑞𝑞0

1

1

00

0

1

0

1

1. Input 0 moves to 𝛿𝛿1(𝑞𝑞0, 0) = 𝑞𝑞0
2. Input 1 moves to 𝛿𝛿1(𝑞𝑞0, 1) = 𝑞𝑞1

• The automaton 𝑀𝑀1 accepts `0101' because 𝑞𝑞0 ∈ 𝐹𝐹.

3. Input 0 moves to 𝛿𝛿1(𝑞𝑞1, 0) = 𝑞𝑞1
4. Input 1 moves to 𝛿𝛿1(𝑞𝑞1, 1) = 𝑞𝑞0



State Transition in General
• Change state according to input symbols in Σ

0. The initial state is always 𝑞𝑞0
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𝑞𝑞0 𝑞𝑞1
𝑎𝑎1 𝑞𝑞2

𝑎𝑎2 𝑞𝑞3
𝑎𝑎3 𝑞𝑞𝑛𝑛

𝑎𝑎𝑛𝑛𝑞𝑞𝑖𝑖
𝑎𝑎𝑖𝑖

• M accepts 𝑎𝑎1𝑎𝑎2⋯𝑎𝑎𝑛𝑛 when 𝑞𝑞𝑛𝑛 ∈ 𝐹𝐹

1. After receiving the first symbol 𝑎𝑎1, the state changes to 𝛿𝛿 𝑞𝑞0, 𝑎𝑎1 = 𝑞𝑞1
2. After receiving the second symbol 𝑎𝑎2, the state changes to 𝛿𝛿(𝑞𝑞1, 𝑎𝑎2) = 𝑞𝑞2
3. After receiving the third symbol 𝑎𝑎3, the state changes to 𝛿𝛿(𝑞𝑞2, 𝑎𝑎3) = 𝑞𝑞3

‥‥

𝑖𝑖. After receiving the 𝑖𝑖 th symbol 𝑎𝑎𝑖𝑖, the state changes to 𝛿𝛿(𝑞𝑞𝑖𝑖−1, 𝑎𝑎𝑖𝑖) = 𝑞𝑞𝑖𝑖
‥‥

𝑛𝑛. After receiving the 𝑛𝑛 th symbol 𝑎𝑎𝑛𝑛, the state changes to 𝛿𝛿(𝑞𝑞𝑛𝑛−1, 𝑎𝑎𝑛𝑛) = 𝑞𝑞𝑛𝑛

?
∈ 𝐹𝐹



Accepted Language
• Extend 𝛿𝛿 to a sequence of symbols:

• 𝛿𝛿 𝑞𝑞, 𝑎𝑎1𝑎𝑎2𝑎𝑎3 ⋯𝑎𝑎𝑛𝑛 = 𝛿𝛿(⋯𝛿𝛿 𝛿𝛿 𝛿𝛿 𝑞𝑞, 𝑎𝑎1 , 𝑎𝑎2 , 𝑎𝑎3)⋯ , 𝑎𝑎𝑛𝑛
• 𝛿𝛿 𝑞𝑞, 𝜖𝜖 = 𝑞𝑞
where 𝜖𝜖 represents the empty sequence.
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• 𝑀𝑀 accepts 𝑎𝑎1𝑎𝑎2 ⋯𝑎𝑎𝑛𝑛 when
• 𝛿𝛿 𝑞𝑞0, 𝑎𝑎1𝑎𝑎2 ⋯𝑎𝑎𝑛𝑛 ∈ 𝐹𝐹

• The language which 𝑀𝑀 = (𝑄𝑄, Σ, 𝛿𝛿, 𝑞𝑞0, 𝐹𝐹) accepts can be 
defined as follows:
• 𝐿𝐿 𝑀𝑀 = 𝑥𝑥 ∈ Σ∗ δ 𝑞𝑞0, 𝑥𝑥 ∈ 𝐹𝐹



FA Example (2)
• Write the state diagram of the following machine.

• 𝑀𝑀2 = 𝑞𝑞0, 𝑞𝑞1, 𝑞𝑞2 , 0,1 , 𝛿𝛿2, 𝑞𝑞0, 𝑞𝑞2

8

• What is the language 𝐿𝐿 𝑀𝑀2 which 𝑀𝑀2 accepts?

𝛿𝛿2 0 1

𝑞𝑞0 𝑞𝑞0 𝑞𝑞1

𝑞𝑞1 𝑞𝑞0 𝑞𝑞2

𝑞𝑞2 𝑞𝑞2 𝑞𝑞2

𝑞𝑞1 𝑞𝑞2

1

0

0

𝑞𝑞0

1
0

1

• Accept when input ....



Turing Machine
• Alan Turing

• British Mathematician (1912/6/23～1954/6/7)
• "On Computable Numbers, with an Application to the

Entscheidungsproblem", 1936/5/28
• Entscheidungsproblem = decision problem
• The Entscheidungsproblem = "ask for an algorithm that takes as input a 

statement of a first-order logic and answers "Yes" or "No" according to 
whether the statement is valid" by David Hilbert in 1928.
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tape
head

• Turing Machine
• an infinite length tape
• a head which can read data on the tape and moves left and right



Tape and Head

• Head
• One head
• The head is on top of one cell.
• The head can read and write the symbol in the cell.
• The head can move left or right one cell at a time.
• The head has a state.
• The next state is determined by the current state and the symbol in the cell.
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c 2 _ / a * 5 - 7 _ A @h 1 s F

tape
head𝑞𝑞2

𝑞𝑞1 𝑞𝑞5

• Tape
• One tape width infinite length for left and right
• The tape is divided into cells.
• Each cell holds a symbol (an alphabet or a blank symbol).



Formal Definition
• A Turing machine 𝑀𝑀 consists of the following three things:

• A finite set of tape symbols 𝐴𝐴 = {𝑎𝑎0, 𝑎𝑎1,⋯ , 𝑎𝑎𝑚𝑚−1 }
• Let 𝑎𝑎0 be the special symbol '_' for blank.
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𝑞𝑞𝑞𝑞𝑞
𝑎𝑎/𝑎𝑎𝑎, 𝑑𝑑

• A finite set of states 𝑄𝑄 = 𝑞𝑞0, 𝑞𝑞1,⋯ , 𝑞𝑞𝑙𝑙−1
• 𝑞𝑞1 is the initial state and 𝑞𝑞0 is the final state.

• A transition function 𝑇𝑇:𝑄𝑄 × 𝐴𝐴 → 𝑄𝑄 × 𝐴𝐴 × 𝐿𝐿, 𝑅𝑅, 𝑁𝑁
• Let 𝑞𝑞 be the current state, and 𝑎𝑎 be the tape symbol.
• If 𝑇𝑇 𝑞𝑞, 𝑎𝑎 = (𝑞𝑞′, 𝑎𝑎′, 𝑑𝑑),

• The next state is 𝑞𝑞𝑞,
• The tape symbol is rewritten from 𝑎𝑎 to 𝑎𝑎𝑎,
• If 𝑑𝑑 = 𝐿𝐿, the head moves to left one cell,
• If 𝑑𝑑 = 𝑅𝑅, the head moves to right one cell, and
• If 𝑑𝑑 = 𝑁𝑁, the head does not move.



Turing Machine Example (1)
• The following Turing machine writes '1' when there is 

even number of '1's and '0' otherwise.
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𝑀𝑀3 = _, 0,1 , 𝑞𝑞0, 𝑞𝑞1, 𝑞𝑞2 , 𝑇𝑇3

𝑇𝑇3 _ 0 1
𝑞𝑞1 𝑞𝑞0, 1, 𝑁𝑁 𝑞𝑞1, _, 𝑅𝑅 𝑞𝑞2, _, 𝑅𝑅

𝑞𝑞2 𝑞𝑞0, 0, 𝑁𝑁 𝑞𝑞2, _, 𝑅𝑅 𝑞𝑞1, _, 𝑅𝑅

0 0 10 1
𝑞𝑞1

𝑞𝑞2𝑞𝑞1

1/_,R

1/_,R

0/_,R0/_,R

𝑞𝑞0

_/0,N

_/1,N



Turing Machine Example (2)
• Write a Turing machine which reverse '1' and '0' (i.e. 

replace '1' with '0', and replace '0' with '1').
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𝑀𝑀4 = _, 0,1 , 𝑞𝑞0, 𝑞𝑞1 , 𝑇𝑇4

𝑇𝑇4 _ 0 1
𝑞𝑞1 ( ,   ,   ) ( , , ) ( , , )

0 0 10 1
𝑞𝑞1

𝑞𝑞1 𝑞𝑞0
/  ,

/  ,

/  ,



Turing Machine Example (3)
• Write a Turing machine 𝑀𝑀5 = _, 0,1 , 𝑞𝑞0, 𝑞𝑞1, 𝑞𝑞2,⋯ , 𝑇𝑇5 which adds 

one to the binary number written on the tape.
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0 01 1
𝑞𝑞0

𝑇𝑇5 _ 0 1
𝑞𝑞1 ( ,   ,   ) ( , , ) ( , , )

𝑞𝑞2 ( ,   ,   ) ( , , ) ( , , )

𝑞𝑞3 ( ,   ,   ) ( , , ) ( , , )

1 11 0
𝑞𝑞1



Turing Machine Example (4)
• Write a Turing machine 𝑀𝑀6 = _, 0,1 , 𝑞𝑞0, 𝑞𝑞1, 𝑞𝑞2,⋯ , 𝑇𝑇6 which 

subtracts one from the given binary number on the tape.
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0 01 1

𝑞𝑞0

𝑇𝑇6 _ 0 1
𝑞𝑞1 ( ,   ,   ) ( , , ) ( , , )

𝑞𝑞2 ( ,   ,   ) ( , , ) ( , , )

𝑞𝑞3 ( ,   ,   ) ( , , ) ( , , )

1 11 0

𝑞𝑞1



Computation
• A Turing machine 𝑀𝑀 computes 𝑓𝑓:𝑁𝑁𝑛𝑛 → 𝑁𝑁 when:

• Place 𝑚𝑚1,𝑚𝑚2,⋯ ,𝑚𝑚𝑛𝑛 on the tape with decimal numbers separated 
with a blank

• Start 𝑀𝑀 with the head at the leftmost number position.
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𝑚𝑚2 ⋯ 𝑚𝑚𝑛𝑛 ⋯𝑚𝑚1 ⋯
𝑞𝑞1

𝑚𝑚 ⋯
𝑞𝑞0

• When 𝑀𝑀 terminates, the number at the head is the decimal number 
of 𝑓𝑓(𝑚𝑚1,𝑚𝑚2,⋯ ,𝑚𝑚𝑛𝑛).



Computation and Program
• A Turing machine may not terminate.

• The function it computes is not total, but partial.
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while program

recursive function

Turing machine

• Theorem
• If a Turing machine can compute 𝑓𝑓:𝑁𝑁𝑛𝑛 → 𝑁𝑁, it can be computed by 

a while program.
• If 𝑓𝑓:𝑁𝑁𝑛𝑛 → 𝑁𝑁 is a recursive function, there is a Turing machine which 

can compute the same function.



Summary
• Finite State Automata

• a finite set of states
• a state transition function

• Turing Machine
• an infinite tape and a head

• Computation
• flow chart program
• while program
• recursive function
• Turing machine

18



Homework 4
19

0 01 0

𝑞𝑞0

1 11

𝑞𝑞1

• Write a Turing machine 𝑀𝑀6 = _, 0,1 , 𝑞𝑞0, 𝑞𝑞1, 𝑞𝑞2,⋯ , 𝑇𝑇6 which 
subtracts one from the given binary number on the tape.

• Please delete leading 0's.
• Please handle the case when the given number is 0.
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