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Finite State Automata
- A Finite State Automaton M = (Q, %, 6, q,, F)

- Q: a finite, non-empty set of states

- Z: the input alphabet (a finite, non-empty set of symbols)
- 0. a state-transition function, 6: Q X X - Q

* go: an initial state, an element in Q

- F: a set of final states, a (possibly empty) subset of Q



FA Example (1)

- An automaton which checks whether '1' appears even
number of times in a string of '0" and '1".

M; = ({90, 911,10,1}, 61, 90, {q0})

- Define §; as follows:

61:190, 91} X {0,1} = {q0, 91}

- 51(q0,0) = qo 8, 0 1 1 g
01(q0,1) = q4 m

6 0)=q. do | 4o | 41 E>
L 61(CI1; 1) = qo qq q1 do
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State Transition

* Input "0101" to M,
0. The initial state is g,

1. Input 0 moves to 6;(qy,0) = qq
2. Input 1 moves to 6:(qy, 1) = q4
3. Input 0 moves to §,(q4,0) = g4
4. Input 1 moves to 6;(q1,1) = qo

- The automaton M; accepts 0101' because g, € F.
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State Transition in General

- Change state according to input symbols in X
0. The initial state is always g,

1. After receiving the first symbol a,, the state changes to 6(qg,a,) = ¢4
2. After receiving the second symbol a,, the state changes to §(q;,a;) = q;

3. After receiving the third symbol as, the state changes to 6(q,,a3;) = q;

i. After receiving the i th symbol a;, the state changes to §(q;_1,4a;) = q;

n. After receiving the n th symbol a,,, the state changes to §(q,_1,a,) = qn

- M accepts a,a, ---a,, when q,, € F




Accepted Language

- Extend 6 to a sequence of symbols:
- 6(q,a1aza3 - an) = 6(--6(8(6(q,a1),az),az) -+, ap)

- 6(g.€) =¢q
where € represents the empty sequence.

- M accepts a,a, ‘-- a,, when
* 6(q0, 103+ ay) EF

- The language which M = (Q,Z%, §, qy, F) accepts can be
defined as follows:
* L(M) = {x € 27| 6(qo,x) € F}



FA Example (2)

- Write the state diagram of the following machine.
* My = ({90, 91, 92,{0,1}, 62, 0, {g2})

5, 0 1 0
0
% | 9% | q 1 1 ﬂ
91 | 90 | 92 [>
qz qz )
0 _/

1
- What is the language L(M,) which M, accepts?

- Accept when input ....
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Turing Machine

- Alan Turing
- British Mathematician (1912/6/23~1954/6/7)
- "On Computable Numbers, with an Application to the
Entscheidungsproblem”, 1936/5/28

- Entscheidungsproblem = decision problem

- The Entscheidungsproblem = "ask for an algorithm that takes as input a
statement of a first-order logic and answers "Yes" or "No" according to
whether the statement is valid" by David Hilbert in 1928.

- Turing Machine

- an infinite length tape
- a head which can read data on the tape and moves left and right

tape @4 =

head
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Tape and Head

- Tape
- One tape width infinite length for left and right
- The tape is divided into cells.
- Each cell holds a symbol (an alphabet or a blank symbol).

- Head
- One head
- The head is on top of one cell.
- The head can read and write the symbol in the cell.
- The head can move left or right one cell at a time.
- The head has a state.
- The next state is determined by the current state and the symbol in the cell.

------- hi{1|s|F|lc|?2 [la|*|5|-1|7 Al@ -
tape L =

@&@ head




Formal Definition

- A Turing machine M consists of the following three things:
- Afinite set of tape symbols 4 = {ay, a4, -, am—1 }
- Let a, be the special symbol ' ' for blank.

- Afinite set of states Q = {qq, 91, ", 911}
@, is the initial state and q, is the final state.

- A transition function T:Q x A - Q X A X {L,R, N}
- Let g be the current state, and a be the tape symbol.

The next state is q', a /a’, d ,
+ The tape symbol is rewritten from a to @/, q q
* If d = L, the head moves to left one cell,

- If d = R, the head moves to right one cell, and
« If d = N, the head does not move.




Turing Machine Example (1)

- The following Turing machine writes '1' when there is
even number of '1's and '0' otherwise.

M3 — ({—) 0,1}, {qO' d1, QZ}» TB)

0/_,R 0/_,R

o
(o

T3 _ 0 1

q1 (CIO' 1' N) (qlr_tR) (Qz:_; R)
q> (CIO' O' N) (q2;_;R) (Ql;_; R) E:>

q1



Turing Machine Example (2)

- Write a Turing machine which reverse '1" and '0’ (i.e.
replace '1" with '0", and replace '0" with '1").

M4- — ({_r 011}1 {CIO; q1 }, T4-) /s
T, _ 0 1 [> g /- >
q1 ( ’ ) ( v ) ( v )
/-,
------- 0o|1(0/0/|1

q1
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Turing Machine Example (3)

- Write a Turing machine M = ({ ,0,1},{q0, 91,95, }, Ts) which adds
one to the binary number written on the tape.

------- 11011

do

d1 ( LI ) ( LI ) ( LI )
q> ( LI ) ( 1 ) ( LI )
qs ( LI ) ( 1 ) ( 1 )
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Turing Machine Example (4)

- Write a Turing machine Mg = ({_, 0,1 },{q0,q1,92,** }, T¢) Which
subtracts one from the given blnary number on the tape.

"""" 111100

do

d1 ( LI ) ( LI ) ( LI )
q> ( LI ) ( 1 ) ( LI )
qs ( LI ) ( 1 ) ( 1 )
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Computation

- A Turing machine M computes f: N* - N when:

- Place my,m,, ---, m,, on the tape with decimal numbers separated
with a blank

- Start M with the head at the leftmost number position.

- When M terminates, the number at the head is the decimal number
Off(mli my, -, mn)

q1

¥

do



Computation and Program

- A Turing machine may not terminate.
- The function it computes is not total, but partial.

- Theorem

- If a Turing machine can compute f: N* — N, it can be computed by
a while program.

- If f: N™ = N is a recursive function, there is a Turing machine which
can compute the same function.

[ while program }:>{ Turing machine }

[ recursive function }
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Summary

- Finite State Automata
- a finite set of states
- a state transition function

- Turing Machine
- an infinite tape and a head

- Computation
- flow chart program
- while program
- recursive function
- Turing machine
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Homework 4

- Write a Turing machine My = ({ ,0,1 },{q0,91,9>,* }, T¢) Which
subtracts one from the given binary number on the tape.

.

------- 171111
do

- Please delete leading O's.
- Please handle the case when the given number is O.
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