MATHEMATICS FOR INFORMATION SCIENCE
NO.5 TURING MACHINE AND COMPUTABILITY

Tatsuya Hagino
hagino@sfc.keio.ac.jp

Slides URL

https://vu5.sfc.kelo.ac.jp/slide/

So far

gn EEE o o o o o O o O E— oy,

- Computation /
- flow chart program
- while program
- recursive function

* primitive recursive function
* minimization operator

- Turing machine

flow chart

il

while program

il

{ 1
| 1
E 1

il

Turing machine

- . S S S S S S B e B e B e B S
\-———————————————_

[lambda calculus }

Computation

- A Turing machine M computes f: N* - N when:

- Place m{,m,,---, m,, on the tape with decimal numbers separated
with a blank

- Start M with the head at the leftmost number position.

- When M terminates, the number at the head is the decimal number
of f(ml' may, -, mn)

d1

¥

do

Computation and Program

- A Turing machine may not terminate.
- The function it computes is not total, but partial.

- Theorem

- If a Turing machine can compute f: N® — N, it can be computed by
a while program.

- If f: N™ = N is a recursive function, there is a Turing machine which
can compute the same function.

[while program }:>[Turing machine J

[recursive function }

5

Decidable vs Undecidable Problems

- Decidable Problem
- A problem for which a program can say yes or no. 4 \

; Undecidable Problems
- The program needs to terminate.
- Undecidable Problem N,

- The corresponding recursive function needs to be total. S
Problems
p
- A problem which is not decidable.

- There might be a program which may say yes, but it does not
termination if the answer is no.

- The corresponding function is not recursive, or it is recursive but
not total.

- Halting Problem:

- Is there a program which tells whether a given program P for a

given input a4, ..., a, will eventually terminate and return a value or
will run forever?

N
Encoding Programs

- In order to make a program as an input to another program, we
need to represent a program as a number (i.e. encoding)

- Encoding flow chart programs:
- Boxes are connected by arrows
- Put a number to each box
- Each box is one of the following:

« input(xq, X, +, X)
c X;i=m

© X=X+ X

© X=X — X

©Xp = Xj X X

©Xp =X R Xy

o if (xl- = xj)

* output(x;)

Encoding

- Let x4, ..., x,, be input variables and x,, .1, X, 42, ..., X; be other variables.

- Let A4,4,, ..., A; be boxes of program P where A, is the input box and 4; is the output
box.

- Using Godel number, encode each box as #A:

A, #Aq
input(xy, x5, -+, x;,) (1,n,a’)
xl = m (21 il m; a,)
Xl = x]+Xk (Bliljlkla’,)
Xi 1= Xj — X (4,i,),k,a’)
X; 1= x; X X (5,i,j,k,a’)
{ J k J
X; 1= X+ X (6,1,j,k,a’)
lf (xl = x]) (71 iljl a’, a”)
output(x;) (8,1)

- The program can be encoded as:
- #P = (#Al, #Az, veey #Al)

N S
Interpreter for P

Theorem:
- The following partial function comp,,: N**! - N is computable.

y when z = #P and y = fp(xq, ... X3,)
comp,,(z, X1, ..., Xp) = -

undefined otherwise

—

where fp Is the recursive function for program P.

Proof:

- Write a program which computes comp,, by simulating the flow
chart program represented by #P.

comp,,(z, X1, ..., Xp)

input(z, x4, x5, -+, Xp,)

..
1 S

n = Gy(b)
vi=G(Xq, ., %p,0,..,0) #
a = G3(b)
[= G,(b)
m = G3(b) S
V= G(Gl(v), ., m, ...,Gn(v)) -
a = G4(b) i = G,(b)
J = G3(b)
> k == G4(b)

vi=G (Gl(v), v Gi(V) + Gj(V), ..., Gn(v))
a = Gs(b)

comp,,(z, x4, ..., X,) cont.

[= G,(b)
J = G3(b)
k = G4(b) >
vi=G (Gl(v), vy Gi(V) — G (V), ..., Gn(v))
a = Gs(b)
[= Gy(b)
J = G3(b)
k = Gy (b) 5
vi=G (Gl(v), v G (V) X Gj(V), ..., Gn(v))
a = Gs(b)
[= G,(b)
J = Gz3(b)
k = G,(b) >
vi=G (Gl(v), v, Gi (V) + G (V), ..., Gn(v))
a = Gs(b)
[= Gy(b) yes _ S
j = Gy(0) @ iR

L= Gy(b)
output(G;(v))

no

a

= Gs(b)

Is comp Total?

Theorem: If comp,: N**! - N is extended to a total function
g:N"t"1 >N

g 1s not recursive.

Proof:
- Show the case forn = 1:
- Proof by contradiction and use Cantor’s diagonal argument.

- Assume comp, (z,x) = g(z,x) and g: N?> - N is a total recursive function.
- Let h(x) = g(x,x) + 1. Then, h is also a total recursive function.

- There is a program which calculates h.

- Let c be the code.

- Then, from the definition of comp,, h(x) = comp,(c, x).

- Give h an input c.
h(c) = comp,(c,¢) = g(c, ¢)
- This contradicts with h(c) = g(c,c) + 1.
- Therefore, a recursive total function g does not exist. (QED)

Recursive Predicate

Definition: Predicate p: N™ — {T, F} is a recursive predicate if its
characteristic function C,: N™ — N is recursive.

- G, is total.

- p is decidable.

M p(xq, ..., x0), (X4, ..., xn) @nd (x4, ..., x5, y) are recursive, the
following predlcates are also recursive:

c D(X1, e, X)) A G(Xq, oeny X))
p(x1, e, Xn) V q(xq, o) X))

‘ _‘p(xl» ---»xn)

- Vz < y(r(xl, ey Xy, z))

-z < y(r(xl, ey Xy z))

Halting Problem is Undecidable

- Define predicate halt,(z, x4, ..., x,,) : N1 > {T, F} as follows:

T when comp,,(z, x4, ..., x,,) is defined
halt,(z,xq1, ...,x,) = -

F when comp,,(z, x4, ..., X,,) is undefined

—

Theorem: halt,(z, x4, ..., x,,) IS not recursive (i.e. undecidable).

Proof:

- If halt, (2, x4, ..., x5,) IS @ recursive predicate, its characteristic function
Chalt,, IS recursive and total. Then,

9(Z,x1, ..., Xn) = Chait, (2, X1, ..., Xp) X compy (2, X4, ..., Xp)

IS a total recursive function and this contradicts with the previous
theorem. (QED)

Totality Problem is Undecidable

Theorem: For n > 0, there is no total recursive function g: N**1 - N which satisfies the
following:

{glc,xq, ... xy):N" T 5 N|ceN}= {f:N" > N | f is total and recursive }

- compy(z,xq, ..., x,): N™*1 — N is the universal function for recursive functions (both partial
and total), but there is no universal function for total recursive functions.

Proof:

- Inthe case forn =1, if g:N? - N exists, f(x) = g(x,x) + 1 is a total recursive function.
- Let ¢ be the code of f, g(c,x) = f(x) = g(x,x) + 1 and this contradicts when x = c.

- In the case for n > 1, the proof can be similar. (QED).

Corollary: total,(z) = Vx; -+ Vx,(halt,(z, x4, ..., x,,)) is not a recursive predicate, i.e.
total,, () is undecidable.

Proof: If Coear, is the characteristic function of total,,,

9(2,%1, .., Xp) = Ciotal, (2) X compy (2, x4, ..., Xy)

g is a total recursive function and this contradicts with previous theorem. (QED)

Undecidable Predicates

- halt,(z, x4, ..., x,)
- whether a give program z terminates for the input x4, ..., x,, or not.

- total,(2)
- whether a given program z always terminates or not.

« Vxq - Vx,(comp,(z,xq, ..., x,) = 0)
- whether a given program z always outputs O or not.

« dxq -+ Ix,(comp,, (2, x4, ..., x,) = 0)
- whether a given program z outputs O for some input or not.

- For z, the domain of comp,,(z, x4, ..., x,,) is finite.
- whether a program z terminates for finite sets of input or not.

- For z, comp,(z, x4, ..., x,,) IS @ constant function.
- whether a program z outputs always the same number or not.

- For z and z’, comp,,(z, x4, ..., x,) = comp,,(z', x4, ..., X;,)
- whether two programs z and z' are same or not.

s-m-n Theorem

Theorem: For natural numbers m and n, there is a primitive recursive
function S, ,: N™** — N which satisfies:

COMPyy 1 (Z, X1, ovos X, Y1, o Yin) = €OMPy (St (Z, Y1, v Vi) X1, o) Xt)

Proof: S, n(z,uy, ..., uyy) Is the function which converts
z = (#Aq1, #A,, ..., #A;)
into
z' = (#(input(xy, ..., X)), #(Y1:= Uy), oo, #Vii= Upn), #A,, ..., #A;)
which represents:

input(xq, ..., x,)

V1=U
Ym = Um
A

° Al
The conversion function can be written as a primitive recursive function. (QED)

Recursion Theorem

Theorem: For n and a total recursive function f: N - N, there is a natural
number ¢ which makes the following equation true:

comp,,(f(c), x4, ..., x,) = comp,(c, Xq, ..., Xp)

Proof:
- Let a be the code for comp,, 11 (y, X1, ..., X5, V).

© compy 41 (Y, X1, oy X, ¥) = cOMPp11(a, Xq, o0y Xy, Y) =
Compn(sl,n(ar }’), X1y ey xn)

- Let b be the code for comp,, (f (Sl,n(a, y)) , X1, ...,xn)
- comp,, (f (Sl,n(a' y)),xl, ...,xn) = compy4+1(b, X1, ..., X0, V)

- comp,, (f (Sl,n(a» b)),xl, ...,xn) = compy,+1(b, x4, ..., x5, b) =
comp, (S1.(a, b), x4, ..., x,)

- ¢ =Sy,(a,b)

(QED)

Rice Theorem

Theorem: Let n be a natural number. If a predicate p(z) satisfies the following two conditions,
p(z) is not recursive (i.e. p(z) is undecidable).

(1) Vcvc' (Vx1 ---Vxn(compn(c, X1, -, Xp) = compy,(c’, xq, ...,xn)) = p(c) = p(C'))
2) EIcEIc’(p(c) A —|p(c’))

- (1) means that p(z) truth value is the same for the same program.
- (2) means that p(z) is true for certain number and is false for a different number.

Proof:

- If p is a recursive predicate, let C,, be its characteristic function.
- Let define f: N — N using ¢ and ¢’ which satisfy (2) as follows:

f(2) = Cy(2) x '+ (1-Cy(2)) x ¢
- From the definition, p(f(2)) £ p(2)

- Since f is a total recursive function, using recursion theory there exists ¢’ which
makes comp,,(f(c""), x4, ..., x,,) = comp,(c”, x4, ..., Xp).

- From (1), p(f(c'")) = p(c'"), but this contradicts. (QED)

- Using this theorem, we can prove many predicates are undecidable.
« p(z) = "comp,(z, x4, ..., x,,) iS @ constant function.”
- p(2) is same for the same program, and there are a constant program and a not-constant one.

Post Correspondence Problem

Problem: Given a finite set of string pairs,
{(s1,t1), (S2,82), e, (S, t)}

using string concatenation, determine whether there is a
number sequence iy, ..., i,, which makes the following

equality hold:

Silsiz "'Sim — tiltiz "'tim

Example:
- {(e,abcde), (ababc,ab), (d,cab)}

ababcababdﬂe
ablablcablabcde

- This problem (post correspondence problem) is undecidable.

- There is no program which gives a solution to the problem or none if
there is no solution.

Homework 5

- Solve the following post correspondence problem.
- {(abb, a), (b, abb), (a,bb)}

- If there is an answer, please show how you combine them to create
the same string.

- If there is no answer, please explain why.

Summary

- Decidable Problem
- A problem for which a program can say yes or no.

- Undecidable Problem
- A problem which is not decidable.

- Undecidable predicates:
- Halting problem
- Totality problem
- Post correspondence problem

