

MATHEMATICS FOR INFORMATION SCIENCE

NO.5 TURING MACHINE AND COMPUTABILITY

Tatsuya Hagino

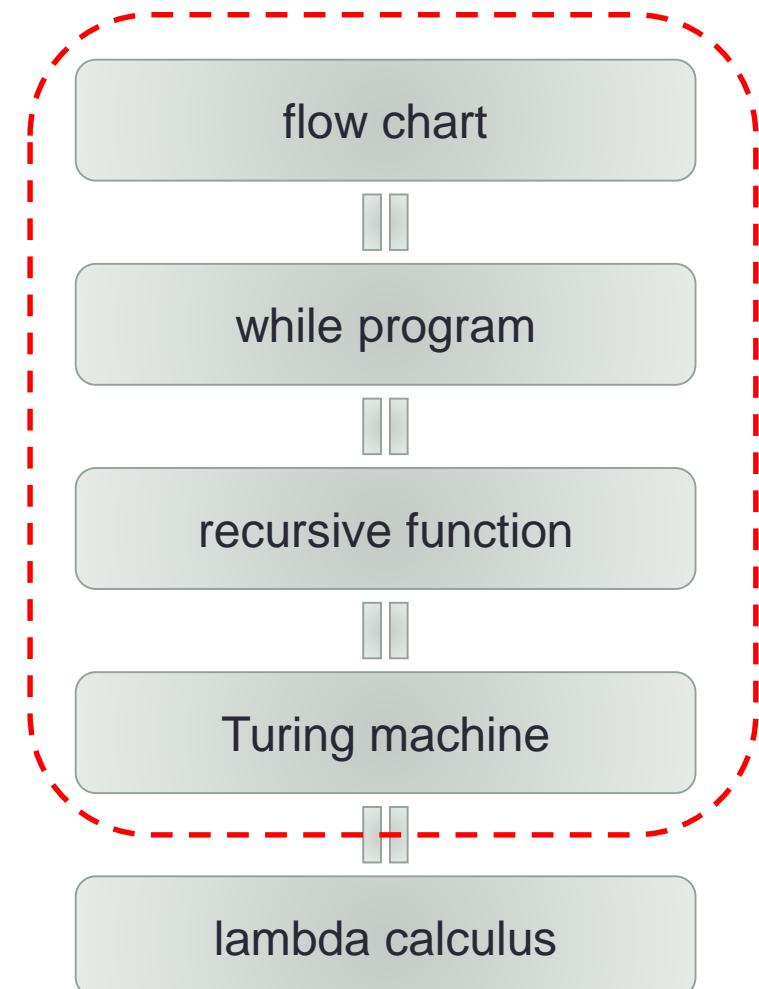
hagino@sfc.keio.ac.jp

Slides URL

<https://vu5.sfc.keio.ac.jp/slides/>

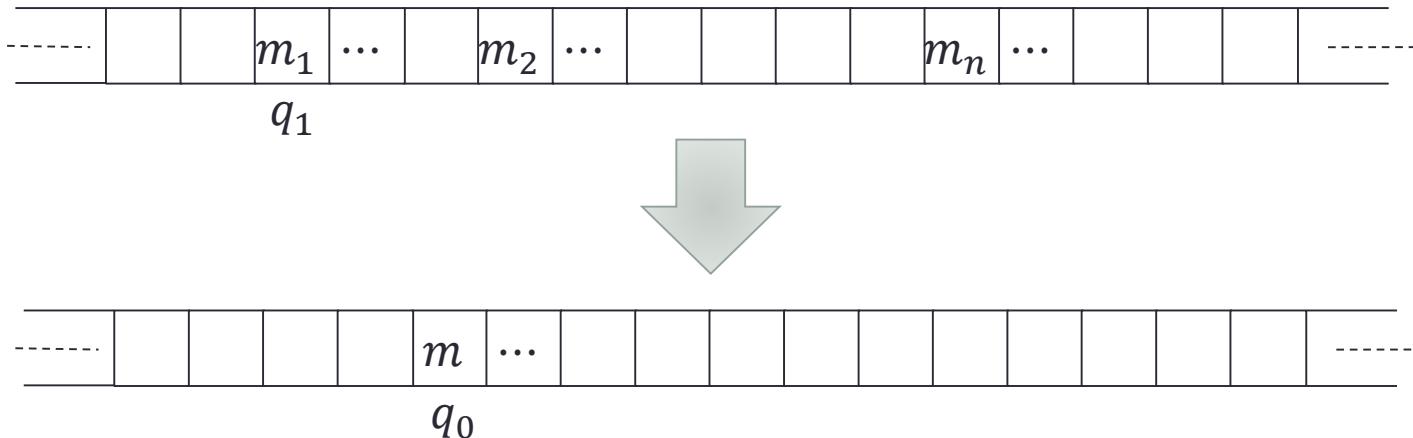
So far

- Computation
 - flow chart program
 - while program
 - recursive function
 - primitive recursive function
 - minimization operator
 - Turing machine



Computation

- A Turing machine M **computes** $f: N^n \rightarrow N$ when:
 - Place m_1, m_2, \dots, m_n on the tape with decimal numbers separated with a blank
 - Start M with the head at the leftmost number position.
 - When M terminates, the number at the head is the decimal number of $f(m_1, m_2, \dots, m_n)$.

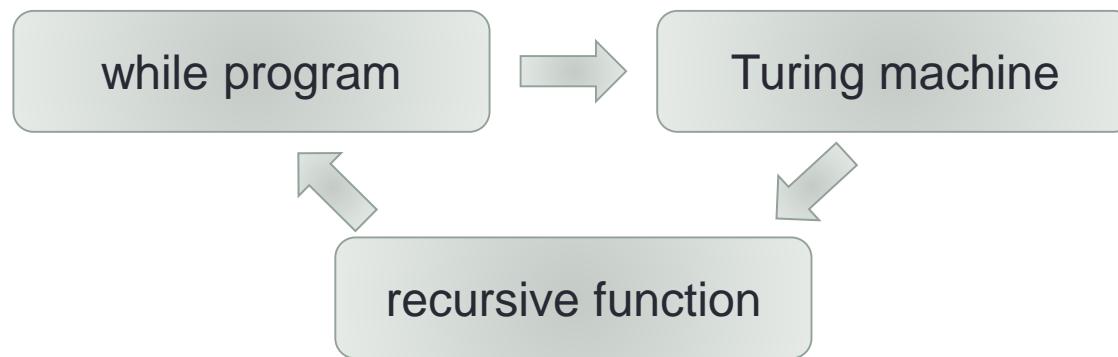


Computation and Program

- A Turing machine may not terminate.
 - The function it computes is not total, but partial.

- **Theorem**

- If a Turing machine can compute $f: N^n \rightarrow N$, it can be computed by a while program.
- If $f: N^n \rightarrow N$ is a recursive function, there is a Turing machine which can compute the same function.



Decidable vs Undecidable Problems

- **Decidable Problem**

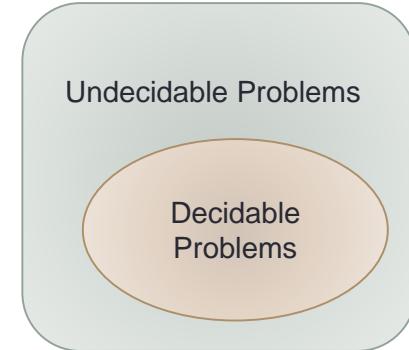
- A problem for which a program can say yes or no.
- The program needs to **terminate**.
- The corresponding recursive function needs to be **total**.

- **Undecidable Problem**

- A problem which is not decidable.
- There might be a program which may say yes, but it does not terminate if the answer is no.
- The corresponding function is **not recursive**, or it is **recursive but not total**.

- **Halting Problem:**

- Is there a program which tells whether a given program P for a given input a_1, \dots, a_n will eventually terminate and return a value or will run forever?



Encoding Programs

- In order to make a program as an input to another program, we need to represent a program as a number (i.e. encoding)
- Encoding flow chart programs:
 - Boxes are connected by arrows
 - Put a number to each box
 - Each box is one of the following:
 - $\text{input}(x_1, x_2, \dots, x_n)$
 - $x_i := m$
 - $x_i := x_j + x_k$
 - $x_i := x_j - x_k$
 - $x_i := x_j \times x_k$
 - $x_i := x_j \div x_k$
 - $\text{if } (x_i = x_j)$
 - $\text{output}(x_i)$

Encoding

- Let x_1, \dots, x_n be input variables and $x_{n+1}, x_{n+2}, \dots, x_t$ be other variables.
- Let A_1, A_2, \dots, A_l be boxes of program P where A_1 is the input box and A_l is the output box.
- Using Gödel number, encode each box as $\#A$:

A_a	$\#A_a$
$\text{input}(x_1, x_2, \dots, x_n)$	$\langle 1, n, a' \rangle$
$x_i := m$	$\langle 2, i, m, a' \rangle$
$x_i := x_j + x_k$	$\langle 3, i, j, k, a' \rangle$
$x_i := x_j - x_k$	$\langle 4, i, j, k, a' \rangle$
$x_i := x_j \times x_k$	$\langle 5, i, j, k, a' \rangle$
$x_i := x_j \div x_k$	$\langle 6, i, j, k, a' \rangle$
$\text{if } (x_i = x_j)$	$\langle 7, i, j, a', a'' \rangle$
$\text{output}(x_i)$	$\langle 8, i \rangle$

- The program can be encoded as:
 - $\#P = \langle \#A_1, \#A_2, \dots, \#A_l \rangle$

Interpreter for P

Theorem:

- The following partial function $\text{comp}_n: N^{n+1} \rightarrow N$ is computable.

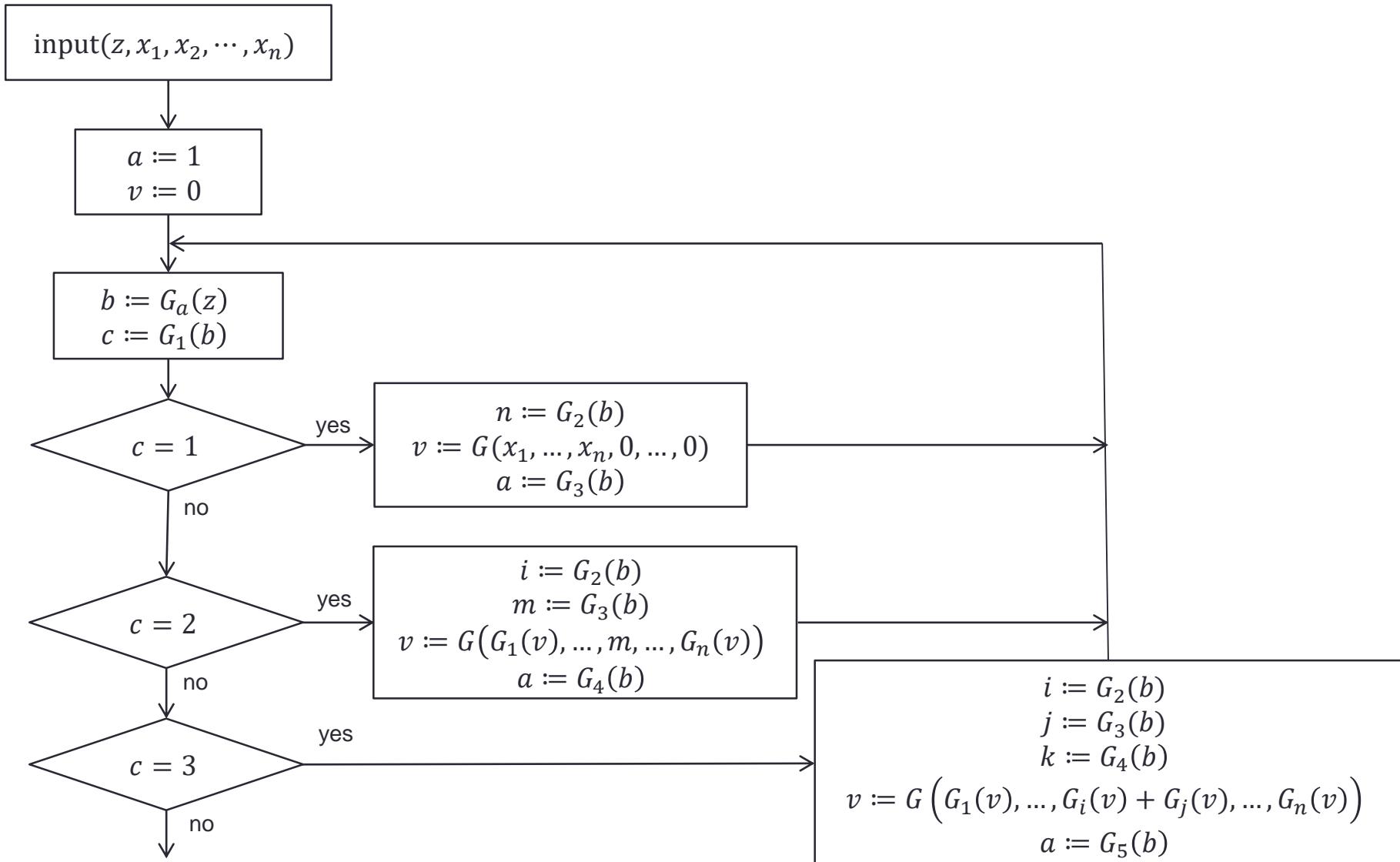
$$\text{comp}_n(z, x_1, \dots, x_n) = \begin{cases} y & \text{when } z = \#P \text{ and } y = f_P(x_1, \dots, x_n) \\ \text{undefined} & \text{otherwise} \end{cases}$$

where f_P is the recursive function for program P .

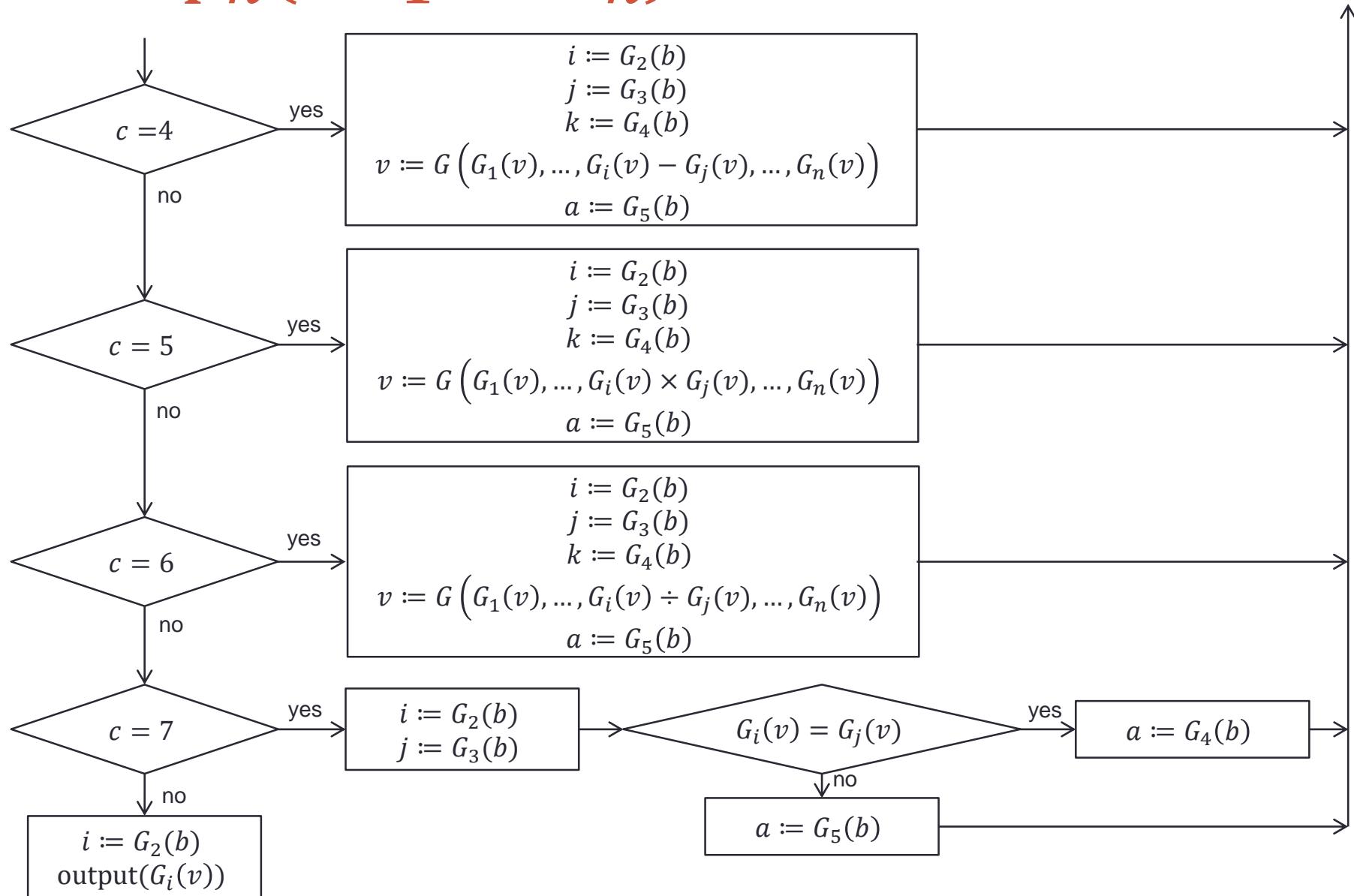
Proof:

- Write a program which computes comp_n by simulating the flow chart program represented by $\#P$.

comp_n(z, x₁, ..., x_n)



comp_n(z, x₁, ..., x_n) cont.



Is comp Total?

Theorem: If $\text{comp}_n: N^{n+1} \rightarrow N$ is extended to a total function
 $g: N^{n+1} \rightarrow N$
 g is not recursive.

Proof:

- Show the case for $n = 1$:
- Proof by contradiction and use **Cantor's diagonal argument**.
- Assume $\text{comp}_1(z, x) = g(z, x)$ and $g: N^2 \rightarrow N$ is a total recursive function.
- Let $h(x) = g(x, x) + 1$. Then, h is also a total recursive function.
- There is a program which calculates h .
- Let c be the code.
- Then, from the definition of comp_1 , $h(x) = \text{comp}_1(c, x)$.
- Give h an input c .

$$h(c) = \text{comp}_1(c, c) = g(c, c)$$

- This contradicts with $h(c) = g(c, c) + 1$.
- Therefore, a recursive total function g does not exist. (QED)

Recursive Predicate

Definition: Predicate $p: N^n \rightarrow \{T, F\}$ is a **recursive predicate** if its characteristic function $C_p: N^n \rightarrow N$ is recursive.

- C_p is total.
- p is decidable.
- If $p(x_1, \dots, x_n)$, $q(x_1, \dots, x_n)$ and $r(x_1, \dots, x_n, y)$ are recursive, the following predicates are also recursive:
 - $p(x_1, \dots, x_n) \wedge q(x_1, \dots, x_n)$
 - $p(x_1, \dots, x_n) \vee q(x_1, \dots, x_n)$
 - $\neg p(x_1, \dots, x_n)$
 - $\forall z < y(r(x_1, \dots, x_n, z))$
 - $\exists z < y(r(x_1, \dots, x_n, z))$

Halting Problem is Undecidable

- Define predicate $\text{halt}_n(z, x_1, \dots, x_n) : N^{n+1} \rightarrow \{T, F\}$ as follows:

$$\text{halt}_n(z, x_1, \dots, x_n) = \begin{cases} T & \text{when } \text{comp}_n(z, x_1, \dots, x_n) \text{ is defined} \\ F & \text{when } \text{comp}_n(z, x_1, \dots, x_n) \text{ is undefined} \end{cases}$$

Theorem: $\text{halt}_n(z, x_1, \dots, x_n)$ is not recursive (i.e. undecidable).

Proof:

- If $\text{halt}_n(z, x_1, \dots, x_n)$ is a recursive predicate, its characteristic function C_{halt_n} is recursive and total. Then,

$$g(z, x_1, \dots, x_n) = C_{\text{halt}_n}(z, x_1, \dots, x_n) \times \text{comp}_n(z, x_1, \dots, x_n)$$

is a total recursive function and this contradicts with the previous theorem. (QED)

Totality Problem is Undecidable

Theorem: For $n > 0$, there is no total recursive function $g: N^{n+1} \rightarrow N$ which satisfies the following:

$$\{ g(c, x_1, \dots, x_n) : N^{n+1} \rightarrow N \mid c \in N \} = \{ f : N^n \rightarrow N \mid f \text{ is total and recursive} \}$$

- $\text{comp}_n(z, x_1, \dots, x_n) : N^{n+1} \rightarrow N$ is the universal function for recursive functions (both partial and total), but there is no universal function for total recursive functions.

Proof:

- In the case for $n = 1$, if $g: N^2 \rightarrow N$ exists, $f(x) = g(x, x) + 1$ is a total recursive function.
- Let c be the code of f , $g(c, x) = f(x) = g(x, x) + 1$ and this contradicts when $x = c$.
- In the case for $n > 1$, the proof can be similar. (QED).

Corollary: $\text{total}_n(z) \equiv \forall x_1 \dots \forall x_n (\text{halt}_n(z, x_1, \dots, x_n))$ is not a recursive predicate, i.e. $\text{total}_n(z)$ is undecidable.

Proof: If C_{total_n} is the characteristic function of total_n ,

$$g(z, x_1, \dots, x_n) = C_{\text{total}_n}(z) \times \text{comp}_n(z, x_1, \dots, x_n)$$

g is a total recursive function and this contradicts with previous theorem. (QED)

Undecidable Predicates

- $\text{halt}_n(z, x_1, \dots, x_n)$
 - whether a given program z terminates for the input x_1, \dots, x_n or not.
- $\text{total}_n(z)$
 - whether a given program z always terminates or not.
- $\forall x_1 \dots \forall x_n (\text{comp}_n(z, x_1, \dots, x_n) = 0)$
 - whether a given program z always outputs 0 or not.
- $\exists x_1 \dots \exists x_n (\text{comp}_n(z, x_1, \dots, x_n) = 0)$
 - whether a given program z outputs 0 for some input or not.
- For z , the domain of $\text{comp}_n(z, x_1, \dots, x_n)$ is finite.
 - whether a program z terminates for finite sets of input or not.
- For z , $\text{comp}_n(z, x_1, \dots, x_n)$ is a constant function.
 - whether a program z outputs always the same number or not.
- For z and z' , $\text{comp}_n(z, x_1, \dots, x_n) = \text{comp}_n(z', x_1, \dots, x_n)$
 - whether two programs z and z' are same or not.

s-m-n Theorem

Theorem: For natural numbers m and n , there is a primitive recursive function $S_{m,n}: N^{m+1} \rightarrow N$ which satisfies:

$$\text{comp}_{m+n}(z, x_1, \dots, x_n, y_1, \dots, y_m) = \text{comp}_n(S_{m,n}(z, y_1, \dots, y_m), x_1, \dots, x_n)$$

Proof: $S_{m,n}(z, u_1, \dots, u_m)$ is the function which converts

$$z = \langle \#A_1, \#A_2, \dots, \#A_l \rangle$$

into

$$z' = \langle \#(\text{input}(x_1, \dots, x_n)), \#(y_1 := u_1), \dots, \#(y_m := u_m), \#A_2, \dots, \#A_l \rangle$$

which represents:

- $\text{input}(x_1, \dots, x_n)$
- $y_1 := u_1$
- \dots
- $y_m := u_m$
- A_2
- \dots
- A_l

The conversion function can be written as a primitive recursive function. (QED)

Recursion Theorem

Theorem: For n and a total recursive function $f: N \rightarrow N$, there is a natural number c which makes the following equation true:

$$\text{comp}_n(f(c), x_1, \dots, x_n) = \text{comp}_n(c, x_1, \dots, x_n)$$

Proof:

- Let a be the code for $\text{comp}_{n+1}(y, x_1, \dots, x_n, y)$.
- $\text{comp}_{n+1}(y, x_1, \dots, x_n, y) = \text{comp}_{n+1}(a, x_1, \dots, x_n, y) = \text{comp}_n(S_{1,n}(a, y), x_1, \dots, x_n)$
- Let b be the code for $\text{comp}_n(f(S_{1,n}(a, y)), x_1, \dots, x_n)$
- $\text{comp}_n(f(S_{1,n}(a, y)), x_1, \dots, x_n) = \text{comp}_{n+1}(b, x_1, \dots, x_n, y)$
- $\text{comp}_n(f(S_{1,n}(a, b)), x_1, \dots, x_n) = \text{comp}_{n+1}(b, x_1, \dots, x_n, b) = \text{comp}_n(S_{1,n}(a, b), x_1, \dots, x_n)$
- $c = S_{1,n}(a, b)$

(QED)

Rice Theorem

Theorem: Let n be a natural number. If a predicate $p(z)$ satisfies the following two conditions, $p(z)$ is not recursive (i.e. $p(z)$ is undecidable).

- (1) $\forall c \forall c' (\forall x_1 \dots \forall x_n (\text{comp}_n(c, x_1, \dots, x_n) = \text{comp}_n(c', x_1, \dots, x_n)) \Rightarrow p(c) \equiv p(c'))$
- (2) $\exists c \exists c' (p(c) \wedge \neg p(c'))$

- (1) means that $p(z)$ truth value is the same for the same program.
- (2) means that $p(z)$ is true for certain number and is false for a different number.

Proof:

- If p is a recursive predicate, let C_p be its characteristic function.
- Let define $f: N \rightarrow N$ using c and c' which satisfy (2) as follows:

$$f(z) = C_p(z) \times c' + (1 - C_p(z)) \times c$$

- From the definition, $p(f(z)) \not\equiv p(z)$
- Since f is a total recursive function, using recursion theory there exists c'' which makes $\text{comp}_n(f(c''), x_1, \dots, x_n) = \text{comp}_n(c'', x_1, \dots, x_n)$.
- From (1), $p(f(c'')) = p(c'')$, but this contradicts. (QED)
- Using this theorem, we can prove many predicates are undecidable.
 - $p(z) \equiv \text{"comp}_n(z, x_1, \dots, x_n)$ is a constant function."
 - $p(z)$ is same for the same program, and there are a constant program and a not-constant one.

Post Correspondence Problem

Problem: Given a finite set of string pairs,

$$\{(s_1, t_1), (s_2, t_2), \dots, (s_n, t_n)\}$$

using string concatenation, determine whether there is a number sequence i_1, \dots, i_m which makes the following equality hold:

$$s_{i_1} s_{i_2} \dots s_{i_m} = t_{i_1} t_{i_2} \dots t_{i_m}$$

Example:

- $\{(e, abcde), (ababc, ab), (d, cab)\}$

a	b	a	b	c	a	b	a	b	c	d	e
a	b	a	b	c	a	b	a	b	c	d	e

- This problem (post correspondence problem) is undecidable.
 - There is no program which gives a solution to the problem or none if there is no solution.

Homework 5

- Solve the following post correspondence problem.
 - $\{(abb, a), (b, abb), (a, bb)\}$
 - If there is an answer, please show how you combine them to create the same string.
 - If there is no answer, please explain why.

Summary

- Decidable Problem
 - A problem for which a program can say yes or no.
- Undecidable Problem
 - A problem which is not decidable.
- Undecidable predicates:
 - Halting problem
 - Totality problem
 - Post correspondence problem