#### MATHEMATICS FOR INFORMATION SCIENCE NO.5 TURING MACHINE AND COMPUTABILITY

Tatsuya Hagino hagino@sfc.keio.ac.jp

Slides URL

https://vu5.sfc.keio.ac.jp/slide/

# So far

#### Computation

- flow chart program
- while program
- recursive function
  - primitive recursive function
  - minimization operator
- Turing machine



## Computation

- A Turing machine *M* computes  $f: N^n \to N$  when:
  - Place  $m_1, m_2, \cdots, m_n$  on the tape with decimal numbers separated with a blank
  - Start *M* with the head at the leftmost number position.
  - When *M* terminates, the number at the head is the decimal number of  $f(m_1, m_2, \dots, m_n)$ .



# **Computation and Program**

- A Turing machine may not terminate.
  - The function it computes is not total, but partial.

#### Theorem

- If a Turing machine can compute  $f: N^n \rightarrow N$ , it can be computed by a while program.
- If  $f: N^n \to N$  is a recursive function, there is a Turing machine which can compute the same function.



## Decidable vs Undecidable Problems

- Decidable Problem
  - A problem for which a program can say yes or no.
  - The program needs to terminate.
  - The corresponding recursive function needs to be total.
- Undecidable Problem
  - A problem which is not decidable.
  - There might be a program which may say yes, but it does not termination if the answer is no.
  - The corresponding function is not recursive, or it is recursive but not total.

#### Halting Problem:

 Is there a program which tells whether a given program P for a given input a<sub>1</sub>, ..., a<sub>n</sub> will eventually terminate and return a value or will run forever?



# **Encoding Programs**

- In order to make a program as an input to another program, we need to represent a program as a number (i.e. encoding)
- Encoding flow chart programs:
  - Boxes are connected by arrows
  - Put a number to each box
  - Each box is one of the following:
    - input( $x_1, x_2, \cdots, x_n$ )
    - $x_i := m$
    - $x_i := x_j + x_k$
    - $x_i := x_j x_k$
    - $x_i := x_j \times x_k$
    - $x_i := x_j \div x_k$
    - if  $(x_i = x_j)$
    - $output(x_i)$

# Encoding

- Let  $x_1, \ldots, x_n$  be input variables and  $x_{n+1}, x_{n+2}, \ldots, x_t$  be other variables.
- Let  $A_1, A_2, ..., A_l$  be boxes of program *P* where  $A_1$  is the input box and  $A_l$  is the output box.
- Using Gödel number, encode each box as #A:

| A <sub>a</sub>                                | #A <sub>a</sub>                    |
|-----------------------------------------------|------------------------------------|
| $\operatorname{input}(x_1, x_2, \cdots, x_n)$ | $\langle 1, n, a' \rangle$         |
| $x_i := m$                                    | $\langle 2, i, m, a' \rangle$      |
| $x_i := x_j + x_k$                            | $\langle 3, i, j, k, a' \rangle$   |
| $x_i := x_j - x_k$                            | $\langle 4, i, j, k, a' \rangle$   |
| $x_i := x_j \times x_k$                       | $\langle 5, i, j, k, a' \rangle$   |
| $x_i := x_j \div x_k$                         | $\langle 6, i, j, k, a' \rangle$   |
| $if(x_i = x_j)$                               | $\langle 7, i, j, a', a'' \rangle$ |
| output( <i>x</i> <sub>i</sub> )               | $\langle 8, i \rangle$             |

- The program can be encoded as:
  - $\bullet \ \ \#P = \langle \#A_1, \#A_2, \dots, \#A_l \rangle$

## Interpreter for P

#### Theorem:

• The following partial function  $comp_n: N^{n+1} \rightarrow N$  is computable.

 $\operatorname{comp}_n(z, x_1, \dots, x_n) = \begin{cases} y & \text{when } z = \#P \text{ and } y = f_P(x_1, \dots, x_n) \\ \text{undefined otherwise} \end{cases}$ 

where  $f_P$  is the recursive function for program *P*.

#### Proof:

• Write a program which computes  $comp_n$  by simulating the flow chart program represented by #P.

 $\operatorname{comp}_n(z, x_1, \dots, x_n)$ 



#### $\operatorname{comp}_n(z, x_1, \dots, x_n)$ cont.



## Is comp Total?

**Theorem:** If  $\operatorname{comp}_n: N^{n+1} \to N$  is extended to a total function  $g: N^{n+1} \to N$ 

g is not recursive.

#### **Proof:**

- Show the case for n = 1:
- Proof by contradiction and use Cantor's diagonal argument.
- Assume  $\operatorname{comp}_1(z, x) = g(z, x)$  and  $g: N^2 \to N$  is a total recursive function.
- Let h(x) = g(x, x) + 1. Then, *h* is also a total recursive function.
- There is a program which calculates *h*.
- Let c be the code.
- Then, from the definition of  $comp_1$ ,  $h(x) = comp_1(c, x)$ .
- Give *h* an input *c*.

$$h(c) = \operatorname{comp}_1(c, c) = g(c, c)$$

- This contradicts with h(c) = g(c, c) + 1.
- Therefore, a recursive total function g does not exist. (QED)

#### **Recursive Predicate**

**Definition:** Predicate  $p: N^n \to \{T, F\}$  is a recursive predicate if its characteristic function  $C_p: N^n \to N$  is recursive.

- $C_p$  is total.
- p is decidable.
- If  $p(x_1, ..., x_n)$ ,  $q(x_1, ..., x_n)$  and  $r(x_1, ..., x_n, y)$  are recursive, the following predicates are also recursive:
  - $p(x_1, \dots, x_n) \wedge q(x_1, \dots, x_n)$
  - $p(x_1, \dots, x_n) \lor q(x_1, \dots, x_n)$
  - $\neg p(x_1, \dots, x_n)$
  - $\forall z < y(r(x_1, \dots, x_n, z))$
  - $\exists z < y(r(x_1, \dots, x_n, z))$

## Halting Problem is Undecidable

 $\[$ 

• Define predicate halt<sub>n</sub>( $z, x_1, ..., x_n$ ) :  $N^{n+1} \rightarrow \{T, F\}$  as follows:

halt<sub>n</sub>(z, 
$$x_1, ..., x_n$$
) =   
 $T$  when comp<sub>n</sub>(z,  $x_1, ..., x_n$ ) is defined  
 $F$  when comp<sub>n</sub>(z,  $x_1, ..., x_n$ ) is undefined

**Theorem:** halt<sub>n</sub>( $z, x_1, ..., x_n$ ) is not recursive (i.e. undecidable).

#### **Proof:**

• If  $halt_n(z, x_1, ..., x_n)$  is a recursive predicate, its characteristic function  $C_{halt_n}$  is recursive and total. Then,

$$g(z, x_1, \dots, x_n) = C_{\text{halt}_n}(z, x_1, \dots, x_n) \times \text{comp}_n(z, x_1, \dots, x_n)$$

is a total recursive function and this contradicts with the previous theorem. (QED)

## **Totality Problem is Undecidable**

**Theorem:** For n > 0, there is no total recursive function  $g: N^{n+1} \rightarrow N$  which satisfies the following:

 $\{g(c, x_1, \dots, x_n): N^{n+1} \to N \mid c \in N\} = \{f: N^n \to N \mid f \text{ is total and recursive }\}$ 

•  $\operatorname{comp}_n(z, x_1, \dots, x_n): N^{n+1} \to N$  is the universal function for recursive functions (both partial and total), but there is no universal function for total recursive functions.

#### Proof:

- In the case for n = 1, if  $g: N^2 \to N$  exists, f(x) = g(x, x) + 1 is a total recursive function.
- Let *c* be the code of *f*, g(c, x) = f(x) = g(x, x) + 1 and this contradicts when x = c.
- In the case for n > 1, the proof can be similar. (QED).

**Corollary:**  $total_n(z) \equiv \forall x_1 \cdots \forall x_n (halt_n(z, x_1, \dots, x_n))$  is not a recursive predicate, i.e.  $total_n(z)$  is undecidable.

**Proof:** If  $C_{\text{total}_n}$  is the characteristic function of  $\text{total}_n$ ,

$$g(z, x_1, \dots, x_n) = C_{\text{total}_n}(z) \times \text{comp}_n(z, x_1, \dots, x_n)$$

g is a total recursive function and this contradicts with previous theorem. (QED)

#### **Undecidable Predicates**

- halt<sub>n</sub>( $z, x_1, \dots, x_n$ )
  - whether a give program z terminates for the input  $x_1, ..., x_n$  or not.
- $total_n(z)$ 
  - whether a given program z always terminates or not.
- ∀x<sub>1</sub> … ∀x<sub>n</sub>(comp<sub>n</sub>(z, x<sub>1</sub>, ..., x<sub>n</sub>) = 0)
  whether a given program z always outputs 0 or not.
- $\exists x_1 \cdots \exists x_n (\operatorname{comp}_n(z, x_1, \dots, x_n) = 0)$ 
  - whether a given program z outputs 0 for some input or not.
- For z, the domain of comp<sub>n</sub>(z, x<sub>1</sub>, ..., x<sub>n</sub>) is finite.
  whether a program z terminates for finite sets of input or not.
- For *z*,  $\operatorname{comp}_n(z, x_1, \dots, x_n)$  is a constant function.
  - whether a program z outputs always the same number or not.
- For *z* and *z'*,  $comp_n(z, x_1, ..., x_n) = comp_n(z', x_1, ..., x_n)$ 
  - whether two programs z and z' are same or not.

#### s-m-n Theorem

**Theorem:** For natural numbers m and n, there is a primitive recursive function  $S_{m,n}: N^{m+1} \rightarrow N$  which satisfies:

 $\operatorname{comp}_{m+n}(z, x_1, \dots, x_n, y_1, \dots, y_m) = \operatorname{comp}_n(S_{m,n}(z, y_1, \dots, y_m), x_1, \dots, x_n))$ 

**Proof:**  $S_{m,n}(z, u_1, ..., u_m)$  is the function which converts  $z = \langle \#A_1, \#A_2, ..., \#A_l \rangle$ 

into

 $z' = \langle #(input(x_1, \dots, x_n)), #(y_1 \coloneqq u_1), \dots, #(y_m \coloneqq u_m), #A_2, \dots, #A_l \rangle$ which represents:

- input( $x_1, \ldots, x_n$ )
- $y_1 \coloneqq u_1$
- • • •
- $y_m \coloneqq u_m$
- *A*<sub>2</sub>
- *A*<sub>l</sub>

The conversion function can be written as a primitive recursive function. (QED)

#### **Recursion Theorem**

**Theorem:** For *n* and a total recursive function  $f: N \rightarrow N$ , there is a natural number *c* which makes the following equation true:

$$\operatorname{comp}_n(f(c), x_1, \dots, x_n) = \operatorname{comp}_n(c, x_1, \dots, x_n)$$

#### **Proof:**

- Let *a* be the code for  $comp_{n+1}(y, x_1, ..., x_n, y)$ .
- $\operatorname{comp}_{n+1}(y, x_1, \dots, x_n, y) = \operatorname{comp}_{n+1}(a, x_1, \dots, x_n, y) = \operatorname{comp}_n(S_{1,n}(a, y), x_1, \dots, x_n)$
- Let *b* be the code for  $\operatorname{comp}_n(f(S_{1,n}(a, y)), x_1, \dots, x_n)$

• 
$$\operatorname{comp}_n\left(f\left(S_{1,n}(a,y)\right), x_1, \dots, x_n\right) = \operatorname{comp}_{n+1}(b, x_1, \dots, x_n, y)$$

• 
$$\operatorname{comp}_n \left( f\left( S_{1,n}(a,b) \right), x_1, \dots, x_n \right) = \operatorname{comp}_{n+1}(b, x_1, \dots, x_n, b) = \operatorname{comp}_n \left( S_{1,n}(a,b), x_1, \dots, x_n \right)$$
  
•  $c = S_{1,n}(a,b)$   
(OED)

## **Rice Theorem**

**Theorem:** Let *n* be a natural number. If a predicate p(z) satisfies the following two conditions, p(z) is not recursive (i.e. p(z) is undecidable).

- (1)  $\forall c \forall c' (\forall x_1 \cdots \forall x_n (\operatorname{comp}_n(c, x_1, \dots, x_n) = \operatorname{comp}_n(c', x_1, \dots, x_n)) \Rightarrow p(c) \equiv p(c'))$ (2)  $\exists c \exists c' (p(c) \land \neg p(c'))$
- (1) means that p(z) truth value is the same for the same program.
- (2) means that p(z) is true for certain number and is false for a different number.

#### **Proof:**

- If p is a recursive predicate, let  $C_p$  be its characteristic function.
- Let define  $f: N \to N$  using c and c' which satisfy (2) as follows:

$$f(z) = C_p(z) \times c' + (1 - C_p(z)) \times c$$

- From the definition,  $p(f(z)) \not\equiv p(z)$
- Since *f* is a total recursive function, using recursion theory there exists c'' which makes  $\operatorname{comp}_n(f(c''), x_1, \dots, x_n) = \operatorname{comp}_n(c'', x_1, \dots, x_n)$ .
- From (1), p(f(c'')) = p(c''), but this contradicts. (QED)
- Using this theorem, we can prove many predicates are undecidable.
  - $p(z) \equiv "comp_n(z, x_1, ..., x_n)$  is a constant function."
  - p(z) is same for the same program, and there are a constant program and a not-constant one.

#### Post Correspondence Problem

**Problem:** Given a finite set of string pairs,  $\{(s_1, t_1), (s_2, t_2), \dots, (s_n, t_n)\}$ 

using string concatenation, determine whether there is a number sequence  $i_1, ..., i_m$  which makes the following equality hold:

$$s_{i_1}s_{i_2}\dots s_{i_m} = t_{i_1}t_{i_2}\dots t_{i_m}$$

#### **Example:**

• {(*e*, *abcde*), (*ababc*, *ab*), (*d*, *cab*)}

ababc ababc de ab ab c ab abc d e

• This problem (post correspondence problem) is undecidable.

 There is no program which gives a solution to the problem or none if there is no solution.

#### Homework 5

- Solve the following post correspondence problem.
  - {(*abb*, *a*), (*b*, *abb*), (*a*, *bb*)}
  - If there is an answer, please show how you combine them to create the same string.
  - If there is no answer, please explain why.

# Summary

- Decidable Problem
  - A problem for which a program can say yes or no.
- Undecidable Problem
  - A problem which is not decidable.
- Undecidable predicates:
  - Halting problem
  - Totality problem
  - Post correspondence problem