MATHEMATICS FOR INFORMATION SCIENCE NO. 8 COMPLETE PARTIAL ORDERED SET

Tatsuya Hagino
hagino@sfc.keio.ac.jp

Slides URL
https://vu5.sfc.keio.ac.jp/slide/

So far

- Computation
- flow chart program
- while program
- recursive function
- primitive recursive function
- minimization operator
- Turing machine
- undecidable problems
- Lambda Calculus
- function abstraction
- function application
- λ representation
- λ expression
- Model function abstraction and application
- What kind of functions?
- $\lambda x \cdot x x$
- x is a function as well as a value.

Model of Lambda Calculus

- Model of λ expression
- $\Lambda=\{M \mid M$ is a λ expression $\}$
- M's meaning
- $\llbracket M \rrbracket$
- M's denotation
- $\llbracket \cdot \rrbracket: \Lambda \rightarrow D$

- Assign a meaning (i.e. a value in D) to each λ expression
- $\llbracket \lambda x . M \rrbracket=\lambda x . \llbracket M \rrbracket$
- $\llbracket M N \rrbracket=\llbracket M \rrbracket(\llbracket N \rrbracket)$
- Property of D
- $\llbracket \lambda x . M \rrbracket \in D \rightarrow D$
- $D \rightarrow D \subseteq D$
- $\llbracket M N \rrbracket=\llbracket M \rrbracket(\llbracket N \rrbracket)$
- $D \subseteq D \rightarrow D$
- Therefore,
- $D \cong D \rightarrow D$
- An element D is always a function.
- There does not exist a non trivial set which satisfies this.

Mathematical Property of Information 1

- Information can be compared.
- "SFC is in Kanagawa"
- "SFC is in Kanto"
- "SFC is in Fujisawa"
- Same as number?
- "SFC is in Kanagawa"
- "SFC is a campus of Keio university"
- Not all information can be compared.

Order Relation

- ㄷ is an order relation on a set D when:
- Reflective: $x \sqsubseteq x$
- Transitive: $x \sqsubseteq y$ and $y \sqsubseteq z$ then $x \sqsubseteq z$
- Antisymmetric: $x \sqsubseteq y$ and $y \sqsubseteq x$ then $x=y$

- (D, \sqsubseteq) is a partially ordered set.
- ㄷ is a partial order.
- Information is a partial ordered set.
- It is not a totally ordered set.
- Totality: for any x and y, either $x \sqsubseteq y$ or $y \sqsubseteq x$ holds.
- Which are partially ordered set?
- Natural number and $x \leq y$
- Integer and $x \leq y$
- Natural number and $x<y$
- Subsets and $A \subseteq B$
- Friend relation

Mathematical Property of Information 2

- There is the smallest information.
- No information.
- Do not know anything.
- \perp is the smallest element when
- for any $x, \perp \subseteq x$

- What is the smallest element of the following partially ordered sets?
- Natural number and $x \leq y$
- Integer and $x \leq y$
- Subsets and $A \subseteq B$

The Largest Element?

- T is the largest element when
- for any $x, x \sqsubseteq \top$

T
பll
x

- The largest information means:
- Include all the information
- Combine all the information
- Even combine wrong information
- Contradiction

Mathematical Property of Information 3

- Combine two information.
(1) "SFC is in Fujisawa"
(2) "SFC is a campus of Keio university"
(3) "SFC is a campus of Keio university in Fujisawa"
$(1) \sqsubseteq(3)$ and $(2) \sqsubseteq(3)$
- (3) is the least upper bound of (1) and (2)
- u is the least upper bound of x and y when
- $x \sqsubseteq u$ and $y \sqsubseteq u$
- for any z which satisfies $x \sqsubseteq z$ and $y \sqsubseteq z, u \sqsubseteq z$
- written as $x \sqcup y$
- The small element which is larger than x and y
- The least upper bound is unique if it exists.
- What is the least upper bound?
- Natural number and $x \leq y$
- Subsets and $A \subseteq B$

Complete Lattice

- $\sqcup A$ is the least upper bound of a set A when
- for any $x \in A, x \sqsubseteq \sqcup A$
- if z satisfies $x \sqsubseteq z$ for any $x \in A, \sqcup A \sqsubseteq z$
- $\sqcup\{x, y\}=x \sqcup y$
- The least upper bound of A and the largest element of A are different.
- $\{0.9,0.99,0.999,0.9999, \ldots$ \}
- The largest element of A needs to be an element of A.
- (D, \sqsubseteq) is a complete lattice when
- for any set $A, \sqcup A$ exists.

Property of Complete Lattice

- A complete lattice has the smallest element.
- $\perp=\sqcup \emptyset$
- A complete lattice has the greatest lower bound for any set A.
- $\sqcap A$ is the greatest lower bound of a set A when
- for any $x \in A, \sqcap A \sqsubseteq x$
- if z satisfies $z \sqsubseteq x$ for any $x \in A, z \sqsubseteq \sqcap A$
- $\sqcap A=\sqcup\{z \in D \mid z \sqsubseteq x$ for any $x \in A\}$
- A complete lattice has the largest element
- $\top=\square \emptyset$
- Is a set of information a complete lattice?

Complete Partial Ordered Set

- A partially ordered set (D, \sqsubseteq) is a complete partial ordered set (cpo) when
- it has the small element \perp
- for $x_{1} \sqsubseteq x_{2} \sqsubseteq x_{3} \sqsubseteq \cdots \sqsubseteq x_{n} \sqsubseteq \cdots$, there is the least upper bound $\sqcup_{i=1}^{\infty} x_{i}$
- There may no exists the largest element.
- A set of information is a complete partial ordered set.

Example

- Subsets and $A \subseteq B$
- complete lattice
- Flat Domain
- For a set S, add the smallest element \perp
- for any $x \in S, \perp \subseteq x$
- A flat domain is CPO.
- For Boolean set $B=\{\mathrm{tt}, \mathrm{ff}\}$, its flat domain is:

$$
B_{\perp}=\left\{\begin{array}{ccc}
\mathrm{tt} & & \mathrm{ff} \\
& & \\
& \perp &
\end{array}\right\}
$$

Program as a Function

- A program is a function between complete partial ordered sets.
- The function needs to take care \perp, \subseteq and \sqcup.
(1) $f(\perp)=\perp$

Program as a Function

- A program is a function between complete partial ordered sets.
- The function needs to take care \perp, \subseteq and \sqcup.
(1) $f(\perp)=\perp$
(2) if $x \sqsubseteq y$, then $f(x) \sqsubseteq f(y)$

Program as a Function

- A program is a function between complete partial ordered sets.
- The function needs to take care \perp, \subseteq and \sqcup.
(1) $f(\perp)=\perp$
(2) if $x \sqsubseteq y$, then $f(x) \sqsubseteq f(y)$
(3) for $x_{1} \sqsubseteq x_{2} \sqsubseteq x_{3} \sqsubseteq \cdots, f\left(\bigsqcup_{i=1}^{\infty} x_{i}\right)=\coprod_{i=1}^{\infty} f\left(x_{i}\right)$

Program as a Function

- A program is a function between complete partial ordered sets.
- A program is a function between complete partial ordered sets.
(1) $f(\perp)=\perp$
(2) if $x \sqsubseteq y$, then $f(x) \sqsubseteq f(y)$
(3) for $x_{1} \sqsubseteq x_{2} \sqsubseteq x_{3} \sqsubseteq \cdots, f\left(\coprod_{i=1}^{\infty} x_{i}\right)=\coprod_{i=1}^{\infty} f\left(x_{i}\right)$
- If f satisfies (2), f is monotonic.
- If f satisfies (2) and (3), f is continuous.
- If f satisfies (1), f is strict.
- A program is continuous.

What is bottom?

- The meaning of bottom (the smallest element, \perp):
- No information
- Memory is clear.
- Start of computation
- Not yet computed
- A program returns \perp :
- No answer
- Computation does not terminate.
- Undefined
- Pass \perp to a program:
- No information is given
- Do not use this
- What is a strict function?
- Is any program strict?

Example of Continuous Function

- $B=\{\mathrm{tt}, \mathrm{ff}\}$
- not: $B_{\perp} \rightarrow B_{\perp}$
- $\operatorname{not}(\mathrm{tt})=\mathrm{ff}$
- $\operatorname{not}(\mathrm{ff})=\mathrm{tt}$
- $\operatorname{not}(\perp)=\perp$
- Monotonic
- for \perp 듸 $\mathrm{ff}, \operatorname{not}(\perp)$ ㄷ $\operatorname{not}(f f)$
- for \perp 드 $\mathrm{tt}, \operatorname{not}(\perp) \subseteq \operatorname{not}(\mathrm{tt})$
- Continuous

- $\operatorname{not}(\perp) \sqsubseteq \operatorname{not}(\perp) \sqsubseteq \operatorname{not}(\perp) \sqsubseteq \cdots \sqsubseteq \operatorname{not}(\perp) \sqsubseteq$ $\operatorname{not}(\mathrm{ff}) \sqsubseteq \operatorname{not}(\mathrm{ff}) \sqsubseteq \cdots$
- $N=\{0,1,2,3,4,5, \ldots\}$
- add1: $N_{\perp} \rightarrow N_{\perp}$
- $\operatorname{add} 1(n)=n+1$
- $\operatorname{add} 1(\perp)=\perp$

Summary

- Complete Partial Order
- A set of information
- partial order
- bottom = the smallest element
- least upper bound
- Continuous function
- preserve least upper bounds
- strictness

Homework 8

- Let $B=\{\mathrm{tt}, \mathrm{ff}\}$. Write all the continuous functions of $B_{\perp} \rightarrow B_{\perp}$.
- Example:
- not: $B_{\perp} \rightarrow B_{\perp}$ is continuous.
- $\operatorname{not}(\mathrm{tt})=\mathrm{ff}$
- $\operatorname{not}(\mathrm{ff})=\mathrm{tt}$
- $\operatorname{not}(\perp)=\perp$
- Write down all the continuous functions including 'not'.
- How many are there?

