MATHEMATICS FOR INFORMATION SCIENCE NO.8 COMPLETE PARTIAL ORDERED SET

Tatsuya Hagino hagino@sfc.keio.ac.jp

Slides URL

https://vu5.sfc.keio.ac.jp/slide/

So far

- Computation
 - flow chart program
 - while program
 - recursive function
 - primitive recursive function
 - minimization operator
 - Turing machine
 - undecidable problems
 - Lambda Calculus
 - function abstraction
 - function application
 - λ representation
- λ expression
 - Model function abstraction and application
 - · What kind of functions?
 - $\lambda x. xx$
 - x is a function as well as a value.

Model of Lambda Calculus

- Model of λ expression
 - $\Lambda = \{M \mid M \text{ is a } \lambda \text{ expression}\}$
 - M's meaning
 - [[*M*]]
 - M's denotation
 - $\llbracket \cdot \rrbracket : \Lambda \to D$
 - Assign a meaning (i.e. a value in D) to each λ expression
 - $\llbracket \lambda x. M \rrbracket = \lambda x. \llbracket M \rrbracket$
 - $\bullet \ \llbracket MN \rrbracket = \llbracket M \rrbracket (\llbracket N \rrbracket)$
- Property of D
 - $[\lambda x. M] \in D \to D$
 - $D \to D \subseteq D$
 - $\llbracket MN \rrbracket = \llbracket M \rrbracket (\llbracket N \rrbracket)$ • $D \subseteq D \to D$

- Therefore,
 - $D \cong D \to D$
 - An element *D* is always a function.
 - There does not exist a non trivial set which satisfies this.

Mathematical Property of Information 1

- Information can be compared.
 - "SFC is in Kanagawa"
 - "SFC is in Kanto"
 - "SFC is in Fujisawa"
- Same as number?
 - "SFC is in Kanagawa"
 - "SFC is a campus of Keio university"
- Not all information can be compared.

Order Relation

- \sqsubseteq is an order relation on a set *D* when:
 - Reflective: $x \sqsubseteq x$
 - Transitive: $x \sqsubseteq y$ and $y \sqsubseteq z$ then $x \sqsubseteq z$
 - Antisymmetric: $x \sqsubseteq y$ and $y \sqsubseteq x$ then x = y
- (D, \sqsubseteq) is a partially ordered set.
 - \sqsubseteq is a *partial order*.
- Information is a partial ordered set.
 - It is not a totally ordered set.
 - Totality: for any x and y, either $x \sqsubseteq y$ or $y \sqsubseteq x$ holds.
- Which are partially ordered set?
 - Natural number and $x \le y$
 - Integer and $x \le y$
 - Natural number and x < y
 - Subsets and $A \subseteq B$
 - Friend relation

Mathematical Property of Information 2

- There is the smallest information.
 - No information.
 - Do not know anything.
- \perp is the smallest element when
 - for any x, $\bot \sqsubseteq x$

x 山|

- What is the smallest element of the following partially ordered sets?
 - Natural number and $x \le y$
 - Integer and $x \le y$
 - Subsets and $A \subseteq B$

The Largest Element?

- T is the largest element when
 - for any $x, x \sqsubseteq \top$

- The largest information means:
 - Include all the information
 - Combine all the information
 - Even combine wrong information
 - Contradiction

Ш

X

Mathematical Property of Information 3

- Combine two information.
 - (1) "SFC is in Fujisawa"
 - (2) "SFC is a campus of Keio university"
 - (3) "SFC is a campus of Keio university in Fujisawa"

 $(1) \sqsubseteq (3)$ and $(2) \sqsubseteq (3)$

- (3) is the least upper bound of (1) and (2)
- *u* is *the least upper bound* of *x* and *y* when
 - $x \sqsubseteq u$ and $y \sqsubseteq u$
 - for any z which satisfies $x \sqsubseteq z$ and $y \sqsubseteq z$, $u \sqsubseteq z$
 - written as $x \sqcup y$
 - The small element which is larger than x and y
 - The least upper bound is unique if it exists.
- What is the least upper bound?
 - Natural number and $x \le y$
 - Subsets and $A \subseteq B$

Complete Lattice

- $\sqcup A$ is the least upper bound of a set A when
 - for any $x \in A$, $x \sqsubseteq \sqcup A$
 - if z satisfies $x \sqsubseteq z$ for any $x \in A$, $\sqcup A \sqsubseteq z$
- $\sqcup \{x, y\} = x \sqcup y$
- The least upper bound of *A* and the largest element of *A* are different.
 - { 0.9, 0.99, 0.999, 0.9999, ... }
 - The largest element of A needs to be an element of A.
- (D, \sqsubseteq) is a complete lattice when
 - for any set A, $\sqcup A$ exists.

Property of Complete Lattice

- A complete lattice has the smallest element.
 - $\bot = \sqcup \emptyset$
- A complete lattice has the greatest lower bound for any set A.
 - $\sqcap A$ is the greatest lower bound of a set A when
 - for any $x \in A$, $\sqcap A \sqsubseteq x$
 - if z satisfies $z \sqsubseteq x$ for any $x \in A$, $z \sqsubseteq \Box A$
 - $\sqcap A = \sqcup \{z \in D \mid z \sqsubseteq x \text{ for any } x \in A\}$
- A complete lattice has the largest element
 ⊤ = □ Ø
- Is a set of information a complete lattice?

Complete Partial Ordered Set

- A partially ordered set (D, ⊑) is a complete partial ordered set (cpo) when
 - it has the small element \perp
 - for $x_1 \sqsubseteq x_2 \sqsubseteq x_3 \sqsubseteq \cdots \sqsubseteq x_n \sqsubseteq \cdots$, there is the least upper bound $\sqcup_{i=1}^{\infty} x_i$
- There may no exists the largest element.
- A set of information is a complete partial ordered set.

Example

- Subsets and $A \subseteq B$
 - complete lattice
- Flat Domain
 - For a set S, add the smallest element \perp
 - for any $x \in S$, $\bot \sqsubseteq x$
 - A flat domain is CPO.
 - For Boolean set $B = \{tt, ff\}$, its flat domain is:

$$B_{\perp} = \left\{ \begin{array}{cc} \text{tt} & \text{ff} \\ \swarrow & \swarrow \\ & \bot \end{array} \right\}$$

- A program is a function between complete partial ordered sets.
- The function needs to take care \bot , \sqsubseteq and \sqcup . (1) $f(\bot) = \bot$

- A program is a function between complete partial ordered sets.
- The function needs to take care ⊥, ⊑ and ⊔.
 (1) f(⊥) =⊥
 (2) if x ⊑ y, then f(x) ⊑ f(y)

- A program is a function between complete partial ordered sets.
- The function needs to take care ⊥, ⊑ and ⊔.
 (1) f(⊥) =⊥
 (2) if x ⊑ y, then f(x) ⊑ f(y)
 (3) for x₁ ⊑ x₂ ⊑ x₃ ⊑ …, f(∐_{i=1}[∞] x_i) = ∐_{i=1}[∞] f(x_i)

- A program is a function between complete partial ordered sets.
- A program is a function between complete partial ordered sets.
 - (1) $f(\perp) = \perp$ (2) if $x \sqsubseteq y$, then $f(x) \sqsubseteq f(y)$ (3) for $x_1 \sqsubseteq x_2 \sqsubseteq x_3 \sqsubseteq \cdots$, $f(\coprod_{i=1}^{\infty} x_i) = \coprod_{i=1}^{\infty} f(x_i)$
- If f satisfies (2), f is monotonic.
- If f satisfies (2) and (3), f is continuous.
- If f satisfies (1), f is strict.
- A program is continuous.

What is bottom?

- The meaning of bottom (the smallest element, \perp):
 - No information
 - Memory is clear.
 - Start of computation
 - Not yet computed
- A program returns ⊥:
 - No answer
 - Computation does not terminate.
 - Undefined
- Pass \perp to a program:
 - No information is given
 - Do not use this
- What is a strict function?
 - Is any program strict?

Example of Continuous Function

- $B = \{\mathsf{tt}, \mathsf{ff}\}$
- not: $B_{\perp} \rightarrow B_{\perp}$
 - not(tt) = ff
 - not(ff) = tt
 - $not(\perp) = \perp$

- Monotonic
 - for $\bot \sqsubseteq$ ff , not(\bot) \sqsubseteq not(ff)
 - for $\bot \sqsubseteq$ tt , not(\bot) \sqsubseteq not(tt)
- Continuous
 - for $\bot \subseteq \bot \subseteq \bot \subseteq \cdots \subseteq \bot \subseteq ff \subseteq ff \subseteq \cdots$,
 - $\operatorname{not}(\bot) \sqsubseteq \operatorname{not}(\bot) \sqsubseteq \operatorname{not}(\bot) \sqsubseteq \cdots \sqsubseteq \operatorname{not}(\bot) \sqsubseteq$ $\operatorname{not}(\operatorname{ff}) \sqsubseteq \operatorname{not}(\operatorname{ff}) \sqsubseteq \cdots$

- $N = \{0, 1, 2, 3, 4, 5, ...\}$
- add1: $N_{\perp} \rightarrow N_{\perp}$
 - $\operatorname{add1}(n) = n + 1$
 - add1(\perp) = \perp

Summary

- Complete Partial Order
 - A set of information
 - partial order
 - bottom = the smallest element
 - least upper bound
- Continuous function
 - preserve least upper bounds
 - strictness

Homework 8

- Let $B = \{$ tt, ff $\}$. Write all the continuous functions of $B_{\perp} \rightarrow B_{\perp}$.
- Example:
 - not: $B_{\perp} \rightarrow B_{\perp}$ is continuous.
 - not(tt) = ff
 - not(ff) = tt
 - $not(\perp) = \perp$
- Write down all the continuous functions including 'not'.
- How many are there?