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Fixed Point Theorem

- Theorem: Any continuous function f: D — D has the least fixed
point.
- u is a fixed point when f(u) = u

. Proof- f(L Ef(f(D)
CLEf) EfFW)EFAW EFW EEfI()E-
- U2, fU(L) is the least fixed point.
: f(u;?‘;o fi(J_)) —L®, Fi(L) =u®, Fi(L)  fixed point
- For any fixed point u = f(u),
-1lEu - f(OEfW=u - f2A(EfwW=u
- fi()Eu - Therefore, U2, fY(L) Eu. the least fixed point
- fix: [D - D] - D

- where fix(f) = U2, f'(1)
- Is also continuous.
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Fixed Point Semantics

- Recursive programs are difficult to understand.
- fact(x) = if x = 0 then 1 else x X fact(x — 1)

- fact: N, - N;
- fact = Ax. cond(x =0,1,x X fact(x — 1))
- fact is a fixed point of the following F:
* F:[Ny >N, |- [N, - N,]
- F(f) = )\x.cond(x =0,1,x X f(x — 1))
- Define fact as the least fixed point of F.
- F(L) =
- F2(1) =
- F3(L) =

: fix.(F) =L, F™(L)
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fact = fix(F) =U,_o F*(1)

- F(f) = Ax.cond(x =0,1,x X f(x — 1))

- F(L) = Ax. cond(x =0,1,x XL (x — 1))
= Ax.cond(x =0,1,x X1)
= Ax.cond(x =0,1,1)

- F?2(1) = Ax. cond(x =0,1,x X F(L)(x — 1))
= AX. cond(x =0,1,xXxcond(x—1=0,1, J_))
= AX. cond(x =0,1,x X cond(x = 1,1, J_))
= AX. cond(x =0,1,cond(x =1,x X 1,x xJ_))
= AX. cond(x =0,1,cond(x = 1,1, J_))
= Ax.cond(x < 1,1, 1)
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fact = fix(F) =U,_o F*(1)

F3(1) = Ax.cond(x = 0,1,x X F2(L)(x — 1))
= AX. cond(x =0,1,xxcond(x—1<1,1, J_))
= AX. cond(x =0,1,x X cond(x < 2,1, J_))
= AX. cond(x =0,1,cond(x <2,xx1,x xJ_))
= AX. cond(x = 0,1, cond(x < 2,x!, J_))
= Ax.cond(x < 2,x!, 1)

F"(L) = Ax.cond(x < n,x!, 1)

F"*1(1) = Ax.cond(x = 0,1, x X F*(L)(x — 1))
= AX. cond(x =0,1,x XxXcond(x —1<n,(x—1)], J.))
= AX. cond(x =0,1,x Xxcond(x <n+1,(x—1)), J.))
= AX. cond(x =0,1,cond(x<n+1,xx(x—-—1),x XJ_))
= AX. cond(x =0,1,cond(x <n+1,x!, J.))
= Ax.cond(x <n+1,x!, 1)
- fact=uj_, F*(L) = Ax.cond(x = 0, x!, L)
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Example

- gx) =ifx=0then1lelse g(x — 1)
-+ g =Ax.cond(x =0,1,g(x — 1))
- g is the least fixed point of G(g) = Ax.cond(x = 0,1, g(x — 1))
* g =Upzo G"(L)
- G(L) =
- G%(L) =

- G3(L) =

- G'(L) =

© g =Up=o G"(L) =



Example 2

- h(x) = if x = 0 then 1 else h(x)
- h = Ax. cond(x = O,1,h(x))
- his the least fixed point of H(h) = Ax.cond(x = 0,1, h(x))
* h =Upzo H"(L)
- H(L) =
- H?(L) =

- H3(L) =

. Hn(J_) —
* h =UpZo H"(1) =
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Semantics of Programming Language

- Syntax of a programming language
- BNF (or Context Free Grammar) is often used for formal definition.

- Semantics of a programming language
- Natural language is ambiguous

- Formal Semantics

- Axiomatic Semantics
- Embed programs in a logic

- Operational Semantics
- Simulate programs in a well-known system

- Denotational Semantics
- Embed programs into mathematical object
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While Program

- While Programs
input(xq,x,, -+, x,)
output(y)

X.=e

{P1; Pp; +++; B}

if (e, = e,)then P else Q
while (e; = e,) P

while D

Vv

program

denotation

while(x=1)
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Denotation of Expression

- Abstract syntax for expression e € Exp

*‘n€eN
cen=n|e te |eg—e|exe; | e/ e
Exp ¢ > N
denotation - En] =n

- Ele; + e;]l = Elleq] + Elle,]
- Elle; — el = Elleq] — Ellex]
- Elley * ex] = Eller] X Efe,]
- Eler / ex]l = Elleq] + Elle,]




Denotation of Expression with Variable

- Abstract syntax for expression e € Exp
cnmeN
- v € Var
cen=nlv|lete |leg—elexey| e/ e

- Denotation of e € Exp may depend on the value of variables.

- State S Var, g
© = [Var, - N, ] .
- 0 € S maps variables to their value. y J\
a

- Denotation of Exp
- EEExp-[S—> N,]

» EnJlo=n - Eley +ey]lo = Eleqllo + Ele,]lo

- E[v]o = o[[v] - Eley —ey]lo = Elleqllo — Eley]lo
- Ele; *x ey]lo = Elle]lo X Elles]lo
- Eley / exllo = Ele1]o + Eles]o
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Denotation of Command

- Abstract syntax for command ¢ € Cmd
-cu=null |x:=e]if(e; = ey) c; else c,| while (e; = e,) ¢ | c1; ¢y

- Denotation of Cmd
. CeCmd—[S—S] g Gl

« C[null]o = o
Cllc Clc
[[1]]>S [c,] > S

* Clleg; cpllo = Clc,1(Clleq]lo) S
~
* Clley; cp] = Cllcz] o Clleq ] Clicy; 5]
n (If y = x)
- Clx =e]lo =a[&e]a/x] o[n/x][y] ={
olly]l (otherwise)

- C[if (e; = e,) cq else c,]o = cond(E[le ]lo = E[e,lo, Clicqlo, Clicy]lo)
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Denotation of Command (cont)

- C[while (e; = e,) cllo

- while (e; = e,) c = if (e; = e,) {c; while (e; = e,) c} else null

- C[while (e; = e,) c]lo = C[lif (e; = e,) {c; while (e; = e,) c}elsenull Jo
= cond(&E[e;]lo = E[e,]lo, Clc; while (e; = e;y) clo, C[null]o)
= cond(&E[e;]lo = E[ey]lo, Cwhile (e; = e,) c[(Clclo), o)

- C[while (e; = e,) c]] = Ao.cond(E[e,]lo = E[le,] o, C[while (e; = e,) c|(Clc]o), o)

- C[while (e; = e,) c] is the fixed point of
- Aw.Ao.cond(&e ]l = Elle,]lo,w(Clclo), o)

- C[while (e; = e,) c]] = fix(AW./la. cond(Ee,]lo = Efe,llo, w(Clc]o), 0))

fix(f) = U2, £1(L)
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Denotation of Command (summary)

- Abstract syntax for command ¢ € Cmd
-cu=null |x:=e]if(e; = ey) c; else c,| while (e; = e,) ¢ | c1; ¢y

- Denotation of Cmd
. CeCmd—[S—S] g Gl

« Clnulllo = o
* Cllcg; c2] = Clica]l o Clleq]

- Clx ==eJlo = a[&[ela/x]

- C[lif (e, = e,) cq else ¢yl = cond(E[e;]lo = E[es]lo, Clcilo, Clicy]lo)

- C[while (e; = e,) c] = fix(Aw.Aa. cond(Ee;]lo = Efe,llo, w(Clc]o), 0))
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Continuation

- Difficult to handle side effect
- Clx =e]lo = a[&[elo/x]

S > S
- Continuation is - C[c] | continuation
- the rest of the computation
- C=1[S—-5]

continuation

95
V
95

- Clc]
- receive the rest of the computation
- returns the computation including ¢ clel
- ¢[c] € [€ > C] S = S] > [S - 5]

- E[e] € [K - C] c
- K =[N, > C] [N, > [S = S]] > [$ - 5]
- K is continuation of expression
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Denotation of Command (Continuation)

- Abstract syntax for command ¢ € Cmd

-cu=null |x:=e]if(e; = ey) c; else c,| while (e; = e,) ¢ | c1; ¢y

- Denotation of Cmd

L C=[s-5] s 51— s g
- C€Cmd~- [C - (C]

« Clc]Bc = 6(c")
- Execute a command c in state ¢ and the modified state ¢’ is passed to 6.

« C[null]e = 6
* Clley; cll0 = Clle,1(Cllc,]60)
- Cllx =e]Oo = E[e] (An.B(a[n/x])

- Cllif (e, = ey) cq else ¢, [0 = E[eq] (Anl. 8[[62]](/1712. cond(n; = n,,Cllc,]6, C[[cz]]H)))

+ Cllwhile (e; = e,) c] = fix </1W./19. Eleq] (Anl. Ele,] (}tnz. cond(n1 = n,, C[c] (w(@)), 9))))



Denotation of Expression (Continuation)

- Abstract syntax for expression e € Exp
cneN
- v € Var
ceun=n|v|le t+e |eg—e |exey e /e | v++

- Denotation of Exp
- E€Exp—- [K - (]
- K=[N, - (]

- E[e]ko = k(n)(o")
- Calculate the value of e in state o and the result n is passed to k with the
modified state o'.

- En]ko = k(n)(o0)

- E[vlko = k(o[v])o

- Elleq + e;]ko = E]eq] (Anl. Ele,](An,. k(ny + nz))) o
- E[v + +]ko = k(o[v])o[o[v] + 1/v]



Domain for Lambda Expression

- Construct a domain D where D = [D — D]

dn
- Do={-}, ln-1_ _ Ty m+1
* Dy = [Dy = Dy] Tty Dy=r 7Dy < Dypyq
%
o D2 = [D1 - Dl] DO D1 dn dn+1
lo
<« -2 n
* Dypyq = [Dy = Dy Dn=: Dwn > Dpy1
dn

@ D0<D1<D2<D3"‘<Dn<“'

* Ty € Dy > Dy = [Dy = Dy] = Dy mo(dy) = d1(J—D0)

“ g € Dy = Dy = Dy = [Dg = Dy] to(do) = Ax1 € Dy.d

* MTp € Dpyq » Dy = [Dn - Dn] - Dy, T[n(dn+1) = Tp_1°dns1 °lp—1

*lyn €Dy 2 Dyyqy =Dy — [Dn - Dn] n(dp) = tgqodpomy_y

* Dy = {(do; dlr"'rdnr"’) | dn € Dn ) nn(dn+1) — dn}
* Dy, < Dy
* Dy = [Doo - Doo]
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Denotation of Lambda Expression

- Abstract syntax for lambda expression M € A
- x € Var
e Mu=x|Ax.M | My M,

* Dy = [Doo_)Doo]
'T[E[Doo_)Doo]_)Doo
'lEDoo_)[Doo_)Doo]

- Denotation of Lambda Expression
cog€S8=Var - D,
« LEA-S[S > Dyl

- Llx]o = o[x]
- L[Ax.M]loc = n(Av € D,.L[M]o[v/x])
« L[My M3]lo = «(L[M;]o)(L[M;]o)
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Homework 10

- Find out what the following functions actually are using fixed point
semantics.

- f(x) =ifx =0thenOelse f(f(x —1)) + 1
- g(x) =ifx=0thenlelse g(g(x — 1)) + 1

- Hint:
- f is the least fixed point of
F(f) = Ax. cond(x =0, O,f(f(x — 1)) + 1)
Calculate U, F™*(1)

- g is the least fixed point of
G(g) = Ax.cond(x =0,1,g(g(x — 1)) + 1)

Calculate U;-, G™(L)
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Summary

- Fixed point
- Fixed point theorem
- Fixed point semantics for recursive functions

- Semantics of Programming Language
- Axiomatic Semantics
- Operational Semantics
- Denotational Semantics

- Denotational Semantics
- Semantic Function
- Continuation
- D,
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