
MATHEMATICS FOR INFORMATION SCIENCE

NO.10 CONTINUOUS FUNCTION
Tatsuya Hagino
hagino@sfc.keio.ac.jp

1

https://vu5.sfc.keio.ac.jp/slide/
Slides URL

Fixed Point Theorem
• Theorem: Any continuous function 𝑓𝑓:𝐷𝐷 → 𝐷𝐷 has the least fixed

point.
• 𝑢𝑢 is a fixed point when 𝑓𝑓 𝑢𝑢 = 𝑢𝑢

2

• Proof:
• ⊥ ⊑ 𝑓𝑓 ⊥

• fix: 𝐷𝐷 → 𝐷𝐷 → 𝐷𝐷
• where fix 𝑓𝑓 = ⊔𝑖𝑖=0∞ 𝑓𝑓𝑖𝑖 ⊥
• is also continuous.

• ⊔𝑖𝑖=0∞ 𝑓𝑓𝑖𝑖 ⊥ is the least fixed point.

• 𝑓𝑓 ⊔𝑖𝑖=0∞ 𝑓𝑓𝑖𝑖 ⊥
• For any fixed point 𝑢𝑢 = 𝑓𝑓 𝑢𝑢 ,

• 𝑓𝑓𝑖𝑖 ⊥ ⊑ 𝑢𝑢

⊑ 𝑓𝑓 𝑓𝑓 ⊥ ⊑ 𝑓𝑓3 ⊥ ⊑ 𝑓𝑓4 ⊥ ⊑ ⋯ ⊑ 𝑓𝑓𝑖𝑖 ⊥ ⊑ ⋯

𝑓𝑓(⊥) ⊑ 𝑓𝑓 𝑓𝑓 ⊥

=⊔𝑖𝑖=1∞ 𝑓𝑓𝑖𝑖 ⊥ =⊔𝑖𝑖=0∞ 𝑓𝑓𝑖𝑖 ⊥

• ⊥⊑ 𝑢𝑢 • 𝑓𝑓 ⊥ ⊑ 𝑓𝑓 𝑢𝑢 = 𝑢𝑢

• Therefore, ⊔𝑖𝑖=0∞ 𝑓𝑓𝑖𝑖 ⊥ ⊑ 𝑢𝑢.

• 𝑓𝑓2 ⊥ ⊑ 𝑓𝑓 𝑢𝑢 = 𝑢𝑢

fixed point

the least fixed point

Fixed Point Semantics
• Recursive programs are difficult to understand.

• fact 𝑥𝑥 ≡ if 𝑥𝑥 = 0 then 1 else 𝑥𝑥 × fact(𝑥𝑥 − 1)

3

• fact:𝑁𝑁⊥ → 𝑁𝑁⊥
• fact = λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, 𝑥𝑥 × fact 𝑥𝑥 − 1
• fact is a fixed point of the following 𝐹𝐹:

• 𝐹𝐹: 𝑁𝑁⊥ → 𝑁𝑁⊥ → 𝑁𝑁⊥ → 𝑁𝑁⊥
• 𝐹𝐹 𝑓𝑓 = λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, 𝑥𝑥 × 𝑓𝑓 𝑥𝑥 − 1

• Define fact as the least fixed point of 𝐹𝐹.
• 𝐹𝐹 ⊥ =
• 𝐹𝐹2 ⊥ =
• 𝐹𝐹3 ⊥ =
• ⋮
• fix 𝐹𝐹 =⊔𝑛𝑛=0∞ 𝐹𝐹𝑛𝑛 ⊥

fact = fix 𝐹𝐹 =⊔𝑛𝑛=0∞ 𝐹𝐹𝑛𝑛 ⊥
• 𝐹𝐹 𝑓𝑓 = λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, 𝑥𝑥 × 𝑓𝑓 𝑥𝑥 − 1

4

• 𝐹𝐹 ⊥ = λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, 𝑥𝑥 ×⊥ 𝑥𝑥 − 1
= λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, 𝑥𝑥 ×⊥
= λ𝑥𝑥. cond 𝑥𝑥 = 0, 1,⊥

• 𝐹𝐹2 ⊥ = λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, 𝑥𝑥 × 𝐹𝐹 ⊥ 𝑥𝑥 − 1
= λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, 𝑥𝑥 × cond 𝑥𝑥 − 1 = 0, 1,⊥
= λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, 𝑥𝑥 × cond 𝑥𝑥 = 1, 1,⊥
= λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, cond 𝑥𝑥 = 1, 𝑥𝑥 × 1, 𝑥𝑥 ×⊥
= λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, cond 𝑥𝑥 = 1, 1,⊥
= λ𝑥𝑥. cond 𝑥𝑥 ≤ 1, 1,⊥

fact = fix 𝐹𝐹 =⊔𝑛𝑛=0∞ 𝐹𝐹𝑛𝑛 ⊥
5

• 𝐹𝐹𝑛𝑛+1 ⊥ = λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, 𝑥𝑥 × 𝐹𝐹𝑛𝑛 ⊥ 𝑥𝑥 − 1
= λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, 𝑥𝑥 × cond 𝑥𝑥 − 1 < 𝑛𝑛, 𝑥𝑥 − 1 !,⊥
= λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, 𝑥𝑥 × cond 𝑥𝑥 < 𝑛𝑛 + 1, 𝑥𝑥 − 1 !,⊥
= λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, cond 𝑥𝑥 < 𝑛𝑛 + 1, 𝑥𝑥 × 𝑥𝑥 − 1 !, 𝑥𝑥 ×⊥
= λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, cond 𝑥𝑥 < 𝑛𝑛 + 1, 𝑥𝑥!,⊥
= λ𝑥𝑥. cond 𝑥𝑥 < 𝑛𝑛 + 1, 𝑥𝑥!,⊥

• 𝐹𝐹3 ⊥ = λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, 𝑥𝑥 × 𝐹𝐹2 ⊥ 𝑥𝑥 − 1
= λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, 𝑥𝑥 × cond 𝑥𝑥 − 1 ≤ 1, 1,⊥
= λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, 𝑥𝑥 × cond 𝑥𝑥 ≤ 2, 1,⊥
= λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, cond 𝑥𝑥 ≤ 2, 𝑥𝑥 × 1, 𝑥𝑥 ×⊥
= λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, cond 𝑥𝑥 ≤ 2, 𝑥𝑥!,⊥
= λ𝑥𝑥. cond 𝑥𝑥 ≤ 2, 𝑥𝑥!,⊥

• 𝐹𝐹𝑛𝑛 ⊥ = λ𝑥𝑥. cond 𝑥𝑥 < 𝑛𝑛, 𝑥𝑥!,⊥

• fact =⊔𝑛𝑛=0∞ 𝐹𝐹𝑛𝑛 ⊥ = λ𝑥𝑥. cond 𝑥𝑥 ≥ 0, 𝑥𝑥!,⊥

Example
• 𝑔𝑔 𝑥𝑥 ≡ if 𝑥𝑥 = 0 then 1 else 𝑔𝑔(𝑥𝑥 − 1)

6

• 𝑔𝑔 ≡ 𝜆𝜆𝜆𝜆. cond 𝑥𝑥 = 0,1,𝑔𝑔 𝑥𝑥 − 1

• 𝑔𝑔 is the least fixed point of 𝐺𝐺(𝑔𝑔) ≡ 𝜆𝜆𝜆𝜆. cond 𝑥𝑥 = 0,1,𝑔𝑔 𝑥𝑥 − 1

• 𝑔𝑔 =⊔𝑛𝑛=0∞ 𝐺𝐺𝑛𝑛 ⊥

• 𝐺𝐺 ⊥ =

• 𝐺𝐺2 ⊥ =

• 𝐺𝐺3 ⊥ =

• 𝐺𝐺𝑛𝑛 ⊥ =

• 𝑔𝑔 =⊔𝑛𝑛=0∞ 𝐺𝐺𝑛𝑛 ⊥ =

Example 2
• ℎ 𝑥𝑥 ≡ if 𝑥𝑥 = 0 then 1 else ℎ(𝑥𝑥)

7

• ℎ ≡ 𝜆𝜆𝜆𝜆. cond 𝑥𝑥 = 0,1,ℎ 𝑥𝑥

• ℎ is the least fixed point of 𝐻𝐻(ℎ) ≡ 𝜆𝜆𝜆𝜆. cond 𝑥𝑥 = 0,1,ℎ 𝑥𝑥

• ℎ =⊔𝑛𝑛=0∞ 𝐻𝐻𝑛𝑛 ⊥

• 𝐻𝐻 ⊥ =

• 𝐻𝐻2 ⊥ =

• 𝐻𝐻3 ⊥ =

• 𝐻𝐻𝑛𝑛 ⊥ =

• ℎ =⊔𝑛𝑛=0∞ 𝐻𝐻𝑛𝑛 ⊥ =

Semantics of Programming Language
• Syntax of a programming language

• BNF (or Context Free Grammar) is often used for formal definition.

8

• Semantics of a programming language
• Natural language is ambiguous

• Formal Semantics
• Axiomatic Semantics

• Embed programs in a logic

• Operational Semantics
• Simulate programs in a well-known system

• Denotational Semantics
• Embed programs into mathematical object

While Program
• While Programs

• input(𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛)
• output(𝑦𝑦)
• 𝑥𝑥: = 𝑒𝑒
• {𝑃𝑃1;𝑃𝑃2; ⋯ ;𝑃𝑃𝑛𝑛}
• if (𝑒𝑒1 = 𝑒𝑒2) then 𝑃𝑃 else 𝑄𝑄
• while (𝑒𝑒1 = 𝑒𝑒2) 𝑃𝑃

9

while
program

𝑥𝑥 ≔ 1

𝑥𝑥
while(x=1)
x:=x+1

𝐷𝐷
denotation

�

�

𝑥𝑥 + 1
�
�

Denotation of Expression
• Abstract syntax for expression 𝑒𝑒 ∈ Exp

• 𝑛𝑛 ∈ 𝑁𝑁
• 𝑒𝑒 ∷= 𝑛𝑛 𝑒𝑒1 + 𝑒𝑒2 𝑒𝑒1 − 𝑒𝑒2 𝑒𝑒1 ∗ 𝑒𝑒2 𝑒𝑒1 / 𝑒𝑒2

10

Exp

1

1 + 2 ∗ 3

2 + 1

𝑁𝑁

1

7

3

denotation

ℰ

• ℰ 𝑛𝑛 = 𝑛𝑛
• ℰ 𝑒𝑒1 + 𝑒𝑒2 = ℰ 𝑒𝑒1 + ℰ 𝑒𝑒2

• ℰ 𝑒𝑒1 − 𝑒𝑒2 = ℰ 𝑒𝑒1 − ℰ 𝑒𝑒2

• ℰ 𝑒𝑒1 ∗ 𝑒𝑒2 = ℰ 𝑒𝑒1 × ℰ 𝑒𝑒2

• ℰ 𝑒𝑒1 / 𝑒𝑒2 = ℰ 𝑒𝑒1 ÷ ℰ 𝑒𝑒2

Denotation of Expression with Variable
• Abstract syntax for expression 𝑒𝑒 ∈ Exp

• 𝑛𝑛 ∈ 𝑁𝑁
• 𝑣𝑣 ∈ Var
• 𝑒𝑒 ∷= 𝑛𝑛 | 𝑣𝑣 𝑒𝑒1 + 𝑒𝑒2 𝑒𝑒1 − 𝑒𝑒2 𝑒𝑒1 ∗ 𝑒𝑒2 𝑒𝑒1 / 𝑒𝑒2

11

• ℰ 𝑛𝑛 𝜎𝜎 = 𝑛𝑛 • ℰ 𝑒𝑒1 + 𝑒𝑒2 𝜎𝜎 = ℰ 𝑒𝑒1 𝜎𝜎 + ℰ 𝑒𝑒2 𝜎𝜎
• ℰ 𝑒𝑒1 − 𝑒𝑒2 𝜎𝜎 = ℰ 𝑒𝑒1 𝜎𝜎 − ℰ 𝑒𝑒2 𝜎𝜎
• ℰ 𝑒𝑒1 ∗ 𝑒𝑒2 𝜎𝜎 = ℰ 𝑒𝑒1 𝜎𝜎 × ℰ 𝑒𝑒2 𝜎𝜎
• ℰ 𝑒𝑒1 / 𝑒𝑒2 𝜎𝜎 = ℰ 𝑒𝑒1 𝜎𝜎 ÷ ℰ 𝑒𝑒2 𝜎𝜎

• Denotation of 𝑒𝑒 ∈ Exp may depend on the value of variables.

• State 𝑆𝑆
• 𝑆𝑆 = [Var⊥ → 𝑁𝑁⊥]
• 𝜎𝜎 ∈ 𝑆𝑆 maps variables to their value.

𝑥𝑥
𝑦𝑦
𝑎𝑎

1
5
⊥

𝜎𝜎Var⊥ 𝑁𝑁⊥

• Denotation of Exp
• ℰ ∈ Exp → 𝑆𝑆 → 𝑁𝑁⊥

• ℰ 𝑣𝑣 𝜎𝜎 = 𝜎𝜎 𝑣𝑣

Denotation of Command
• Abstract syntax for command 𝑐𝑐 ∈ Cmd

• 𝑐𝑐 ∷= null 𝑥𝑥 ≔ 𝑒𝑒 if 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐1 else 𝑐𝑐2 while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 𝑐𝑐1; 𝑐𝑐2

12

• 𝒞𝒞 null 𝜎𝜎 = 𝜎𝜎

𝒞𝒞 𝑐𝑐
𝑆𝑆 𝑆𝑆

• Denotation of Cmd
• 𝒞𝒞 ∈ Cmd → 𝑆𝑆 → 𝑆𝑆

• 𝒞𝒞 𝑐𝑐1; 𝑐𝑐2 𝜎𝜎 = 𝒞𝒞 𝑐𝑐2 𝒞𝒞 𝑐𝑐1 𝜎𝜎

• 𝒞𝒞 𝑐𝑐1; 𝑐𝑐2 = 𝒞𝒞 𝑐𝑐2 ∘ 𝒞𝒞 𝑐𝑐1

𝒞𝒞 𝑐𝑐1𝑆𝑆 𝑆𝑆
𝒞𝒞 𝑐𝑐2 𝑆𝑆

𝒞𝒞 𝑐𝑐1; 𝑐𝑐2

• 𝒞𝒞 𝑥𝑥 ≔ 𝑒𝑒 𝜎𝜎 = 𝜎𝜎[ℰ 𝑒𝑒 𝜎𝜎/𝑥𝑥] 𝜎𝜎 𝑛𝑛/𝑥𝑥 𝑦𝑦 =
𝑛𝑛

𝜎𝜎 𝑦𝑦

(If 𝑦𝑦 = 𝑥𝑥)

(otherwise)

• 𝒞𝒞 if 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐1 else 𝑐𝑐2 𝜎𝜎 = cond ℰ 𝑒𝑒1 𝜎𝜎 = ℰ 𝑒𝑒2 𝜎𝜎,𝒞𝒞 𝑐𝑐1 𝜎𝜎,𝒞𝒞 𝑐𝑐2 𝜎𝜎

Denotation of Command (cont)
• 𝒞𝒞 while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 𝜎𝜎

13

= cond ℰ 𝑒𝑒1 𝜎𝜎 = ℰ 𝑒𝑒2 𝜎𝜎,𝒞𝒞 𝑐𝑐; while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 𝜎𝜎,𝒞𝒞 null 𝜎𝜎

• while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 ≡ if 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐; while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 else null

• 𝒞𝒞 while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 𝜎𝜎 = 𝒞𝒞 if 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐; while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 else null 𝜎𝜎

= cond ℰ 𝑒𝑒1 𝜎𝜎 = ℰ 𝑒𝑒2 𝜎𝜎,𝒞𝒞 while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 𝒞𝒞 𝑐𝑐 𝜎𝜎 ,𝜎𝜎

• 𝒞𝒞 while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 is the fixed point of
• 𝜆𝜆𝜆𝜆. 𝜆𝜆𝜆𝜆. cond ℰ 𝑒𝑒1 𝜎𝜎 = ℰ 𝑒𝑒2 𝜎𝜎,𝑤𝑤 𝒞𝒞 𝑐𝑐 𝜎𝜎 ,𝜎𝜎

• 𝒞𝒞 while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 = 𝜆𝜆𝜆𝜆. cond ℰ 𝑒𝑒1 𝜎𝜎 = ℰ 𝑒𝑒2 𝜎𝜎,𝒞𝒞 while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 𝒞𝒞 𝑐𝑐 𝜎𝜎 ,𝜎𝜎

• 𝒞𝒞 while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 = fix 𝜆𝜆𝜆𝜆. 𝜆𝜆𝜆𝜆. cond ℰ 𝑒𝑒1 𝜎𝜎 = ℰ 𝑒𝑒2 𝜎𝜎,𝑤𝑤 𝒞𝒞 𝑐𝑐 𝜎𝜎 ,𝜎𝜎

fix(𝑓𝑓) ≡ ⊔𝑖𝑖=0∞ 𝑓𝑓𝑖𝑖 ⊥

Denotation of Command (summary)
• Abstract syntax for command 𝑐𝑐 ∈ Cmd

• 𝑐𝑐 ∷= null 𝑥𝑥 ≔ 𝑒𝑒 if 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐1 else 𝑐𝑐2 while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 𝑐𝑐1; 𝑐𝑐2

14

• 𝒞𝒞 null 𝜎𝜎 = 𝜎𝜎

𝒞𝒞 𝑐𝑐
𝑆𝑆 𝑆𝑆

• Denotation of Cmd
• 𝒞𝒞 ∈ Cmd → 𝑆𝑆 → 𝑆𝑆

• 𝒞𝒞 𝑐𝑐1; 𝑐𝑐2 = 𝒞𝒞 𝑐𝑐2 ∘ 𝒞𝒞 𝑐𝑐1

• 𝒞𝒞 𝑥𝑥 ≔ 𝑒𝑒 𝜎𝜎 = 𝜎𝜎[ℰ 𝑒𝑒 𝜎𝜎/𝑥𝑥]

• 𝒞𝒞 if 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐1 else 𝑐𝑐2 𝜎𝜎 = cond ℰ 𝑒𝑒1 𝜎𝜎 = ℰ 𝑒𝑒2 𝜎𝜎,𝒞𝒞 𝑐𝑐1 𝜎𝜎,𝒞𝒞 𝑐𝑐2 𝜎𝜎

• 𝒞𝒞 while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 = fix 𝜆𝜆𝜆𝜆. 𝜆𝜆𝜆𝜆. cond ℰ 𝑒𝑒1 𝜎𝜎 = ℰ 𝑒𝑒2 𝜎𝜎,𝑤𝑤 𝒞𝒞 𝑐𝑐 𝜎𝜎 ,𝜎𝜎

Continuation
• Difficult to handle side effect

• 𝒞𝒞 𝑥𝑥 ≔ 𝑒𝑒 𝜎𝜎 = 𝜎𝜎[ℰ 𝑒𝑒 𝜎𝜎/𝑥𝑥]

15

𝒞𝒞 𝑐𝑐 continuation
𝑆𝑆 𝑆𝑆

continuation

𝑆𝑆 𝑆𝑆

• Continuation is
• the rest of the computation
• 𝐶𝐶 = 𝑆𝑆 → 𝑆𝑆

• 𝒞𝒞 𝑐𝑐
• receive the rest of the computation
• returns the computation including 𝑐𝑐
• 𝒞𝒞 𝑐𝑐 ∈ 𝐶𝐶 → 𝐶𝐶

• ℰ 𝑒𝑒 ∈ 𝐾𝐾 → 𝐶𝐶
• 𝐾𝐾 = 𝑁𝑁⊥ → 𝐶𝐶
• 𝐾𝐾 is continuation of expression

𝒞𝒞 𝑐𝑐
𝑆𝑆 → 𝑆𝑆 𝑆𝑆 → 𝑆𝑆

ℰ 𝑒𝑒
𝑁𝑁⊥ → 𝑆𝑆 → 𝑆𝑆 𝑆𝑆 → 𝑆𝑆

Denotation of Command (Continuation)
• Abstract syntax for command 𝑐𝑐 ∈ Cmd

• 𝑐𝑐 ∷= null 𝑥𝑥 ≔ 𝑒𝑒 if 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐1 else 𝑐𝑐2 while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 𝑐𝑐1; 𝑐𝑐2

16

• 𝒞𝒞 null 𝜃𝜃 = 𝜃𝜃

𝒞𝒞 𝑐𝑐
𝑆𝑆 → 𝑆𝑆 𝑆𝑆 → 𝑆𝑆

• Denotation of Cmd
• 𝐶𝐶 = 𝑆𝑆 → 𝑆𝑆
• 𝒞𝒞 ∈ Cmd → 𝐶𝐶 → 𝐶𝐶

• 𝒞𝒞 𝑐𝑐1; 𝑐𝑐2 𝜃𝜃 = 𝒞𝒞 𝑐𝑐1 𝒞𝒞 𝑐𝑐2 𝜃𝜃

• 𝒞𝒞 𝑥𝑥 ≔ 𝑒𝑒 𝜃𝜃𝜃𝜃 = ℰ 𝑒𝑒 (𝜆𝜆𝜆𝜆. 𝜃𝜃 𝜎𝜎 𝑛𝑛/𝑥𝑥

• 𝒞𝒞 if 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐1 else 𝑐𝑐2 𝜃𝜃 = ℰ 𝑒𝑒1 𝜆𝜆𝑛𝑛1.ℰ 𝑒𝑒2 𝜆𝜆𝑛𝑛2. cond 𝑛𝑛1 = 𝑛𝑛2,𝒞𝒞 𝑐𝑐1 𝜃𝜃,𝒞𝒞 𝑐𝑐2 𝜃𝜃

• 𝒞𝒞 while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 = fix 𝜆𝜆𝜆𝜆. 𝜆𝜆𝜆𝜆. ℰ 𝑒𝑒1 𝜆𝜆𝑛𝑛1. ℰ 𝑒𝑒2 𝜆𝜆𝑛𝑛2. cond 𝑛𝑛1 = 𝑛𝑛2,𝒞𝒞 𝑐𝑐 𝑤𝑤 𝜃𝜃 , 𝜃𝜃

• 𝒞𝒞 𝑐𝑐 𝜃𝜃𝜃𝜃 = 𝜃𝜃 𝜎𝜎′

• Execute a command 𝑐𝑐 in state 𝜎𝜎 and the modified state 𝜎𝜎𝜎 is passed to 𝜃𝜃.

Denotation of Expression (Continuation)
• Abstract syntax for expression 𝑒𝑒 ∈ Exp

• 𝑛𝑛 ∈ 𝑁𝑁
• 𝑣𝑣 ∈ Var
• 𝑒𝑒 ∷= 𝑛𝑛 | 𝑣𝑣 𝑒𝑒1 + 𝑒𝑒2 𝑒𝑒1 − 𝑒𝑒2 𝑒𝑒1 ∗ 𝑒𝑒2 𝑒𝑒1 / 𝑒𝑒2

17

• ℰ 𝑛𝑛 𝜅𝜅𝜅𝜅 = 𝜅𝜅(𝑛𝑛)(𝜎𝜎)

• ℰ 𝑒𝑒1 + 𝑒𝑒2 𝜅𝜅𝜅𝜅 = ℰ 𝑒𝑒1 𝜆𝜆𝑛𝑛1.ℰ 𝑒𝑒2 𝜆𝜆𝑛𝑛2. 𝜅𝜅 𝑛𝑛1 + 𝑛𝑛2 𝜎𝜎

• Denotation of Exp
• ℰ ∈ Exp → 𝐾𝐾 → 𝐶𝐶
• 𝐾𝐾 = 𝑁𝑁⊥ → 𝐶𝐶

• ℰ 𝑣𝑣 𝜅𝜅𝜅𝜅 = 𝜅𝜅 𝜎𝜎 𝑣𝑣 𝜎𝜎

• ℰ 𝑣𝑣 + + 𝜅𝜅𝜅𝜅 = 𝜅𝜅 𝜎𝜎 𝑣𝑣 𝜎𝜎[𝜎𝜎 𝑣𝑣 + 1/𝑣𝑣]

• ℰ 𝑒𝑒 𝜅𝜅𝜅𝜅 = 𝜅𝜅 𝑛𝑛 𝜎𝜎𝜎
• Calculate the value of 𝑒𝑒 in state 𝜎𝜎 and the result 𝑛𝑛 is passed to 𝜅𝜅 with the

modified state 𝜎𝜎𝜎.

| 𝑣𝑣 + +

Domain for Lambda Expression
• Construct a domain 𝐷𝐷 where 𝐷𝐷 ≅ 𝐷𝐷 → 𝐷𝐷

• 𝐷𝐷0 = � ⊥

• 𝐷𝐷1 = 𝐷𝐷0 → 𝐷𝐷0
• 𝐷𝐷2 = 𝐷𝐷1 → 𝐷𝐷1
• ⋯
• 𝐷𝐷𝑛𝑛+1 = 𝐷𝐷𝑛𝑛 → 𝐷𝐷𝑛𝑛

18

• 𝐷𝐷∞ = 𝑑𝑑0,𝑑𝑑1,⋯ ,𝑑𝑑𝑛𝑛,⋯ 𝑑𝑑𝑛𝑛 ∈ 𝐷𝐷𝑛𝑛 , 𝜋𝜋𝑛𝑛 𝑑𝑑𝑛𝑛+1 = 𝑑𝑑𝑛𝑛}
• 𝐷𝐷𝑛𝑛 ⊲ 𝐷𝐷∞
• 𝐷𝐷∞ ≅ D∞ → 𝐷𝐷∞

• 𝐷𝐷0 ⊲ 𝐷𝐷1 ⊲ 𝐷𝐷2 ⊲ 𝐷𝐷3 ⋯ ⊲ 𝐷𝐷𝑛𝑛 ⊲ ⋯
• 𝜋𝜋0 ∈ 𝐷𝐷1 → 𝐷𝐷0 = 𝐷𝐷0 → 𝐷𝐷0 → 𝐷𝐷0 𝜋𝜋0 𝑑𝑑1 = 𝑑𝑑1 ⊥𝐷𝐷0
• 𝜄𝜄0 ∈ 𝐷𝐷0 → 𝐷𝐷1 = 𝐷𝐷0 → 𝐷𝐷0 → 𝐷𝐷0 𝜄𝜄0 𝑑𝑑0 = 𝜆𝜆𝑥𝑥1 ∈ 𝐷𝐷0.𝑑𝑑0

• 𝜋𝜋𝑛𝑛 ∈ 𝐷𝐷𝑛𝑛+1 → 𝐷𝐷𝑛𝑛 = 𝐷𝐷𝑛𝑛 → 𝐷𝐷𝑛𝑛 → 𝐷𝐷𝑛𝑛 𝜋𝜋𝑛𝑛 𝑑𝑑𝑛𝑛+1 = 𝜋𝜋𝑛𝑛−1 ∘ 𝑑𝑑𝑛𝑛+1 ∘ 𝜄𝜄𝑛𝑛−1

𝐷𝐷0 𝐷𝐷1

𝜋𝜋0

𝜄𝜄0

𝐷𝐷𝑛𝑛 𝐷𝐷𝑛𝑛+1𝐷𝐷𝑛𝑛−1
𝜋𝜋𝑛𝑛

𝑑𝑑𝑛𝑛+1∈

𝐷𝐷𝑛𝑛

𝑑𝑑𝑛𝑛+1

𝐷𝐷𝑛𝑛−1

𝜄𝜄𝑛𝑛−1

𝜋𝜋𝑛𝑛−1 𝜄𝜄𝑛𝑛 𝐷𝐷𝑛𝑛+1
𝑑𝑑𝑛𝑛

∈

𝑑𝑑𝑛𝑛

• 𝜄𝜄𝑛𝑛 ∈ 𝐷𝐷𝑛𝑛 → 𝐷𝐷𝑛𝑛+1 = 𝐷𝐷𝑛𝑛 → 𝐷𝐷𝑛𝑛 → 𝐷𝐷𝑛𝑛 𝜄𝜄𝑛𝑛 𝑑𝑑𝑛𝑛 = 𝜄𝜄𝑛𝑛−1 ∘ 𝑑𝑑𝑛𝑛 ∘ 𝜋𝜋𝑛𝑛−1

Denotation of Lambda Expression
• Abstract syntax for lambda expression 𝑀𝑀 ∈ Λ

• 𝑥𝑥 ∈ Var
• 𝑀𝑀 ∷= 𝑥𝑥 | 𝜆𝜆𝜆𝜆.𝑀𝑀 | 𝑀𝑀1 𝑀𝑀2

19

• 𝐷𝐷∞ ≅ D∞ → 𝐷𝐷∞
• 𝜋𝜋 ∈ 𝐷𝐷∞ → 𝐷𝐷∞ → 𝐷𝐷∞
• 𝜄𝜄 ∈ 𝐷𝐷∞ → 𝐷𝐷∞ → 𝐷𝐷∞

• Denotation of Lambda Expression
• 𝜎𝜎 ∈ 𝑆𝑆 = Var → 𝐷𝐷∞
• ℒ ∈ Λ → 𝑆𝑆 → 𝐷𝐷∞

• ℒ 𝑥𝑥 𝜎𝜎 = 𝜎𝜎 𝑥𝑥
• ℒ 𝜆𝜆𝜆𝜆.𝑀𝑀 𝜎𝜎 = 𝜋𝜋 𝜆𝜆𝜆𝜆 ∈ 𝐷𝐷∞.ℒ 𝑀𝑀 𝜎𝜎[𝑣𝑣/𝑥𝑥]

• ℒ 𝑀𝑀1 𝑀𝑀2 𝜎𝜎 = 𝜄𝜄 ℒ 𝑀𝑀1 𝜎𝜎 ℒ 𝑀𝑀2 𝜎𝜎

Homework 10
• Find out what the following functions actually are using fixed point

semantics.
• 𝑓𝑓 𝑥𝑥 ≡ if 𝑥𝑥 = 0 then 0 else 𝑓𝑓 𝑓𝑓 𝑥𝑥 − 1 + 1
• 𝑔𝑔 𝑥𝑥 ≡ if 𝑥𝑥 = 0 then 1 else 𝑔𝑔 𝑔𝑔 𝑥𝑥 − 1 + 1

• Hint:
• 𝑓𝑓 is the least fixed point of

𝐹𝐹 𝑓𝑓 = 𝜆𝜆𝜆𝜆. cond 𝑥𝑥 = 0, 0, 𝑓𝑓 𝑓𝑓 𝑥𝑥 − 1 + 1
Calculate ⊔𝑛𝑛=0∞ 𝐹𝐹𝑛𝑛 ⊥

• 𝑔𝑔 is the least fixed point of
𝐺𝐺 𝑔𝑔 = 𝜆𝜆𝜆𝜆. cond 𝑥𝑥 = 0, 1,𝑔𝑔 𝑔𝑔 𝑥𝑥 − 1 + 1

Calculate ⊔𝑛𝑛=0∞ 𝐺𝐺𝑛𝑛 ⊥

20

Summary
• Fixed point

• Fixed point theorem
• Fixed point semantics for recursive functions

• Semantics of Programming Language
• Axiomatic Semantics
• Operational Semantics
• Denotational Semantics

• Denotational Semantics
• Semantic Function
• Continuation
• 𝐷𝐷∞

21

	Mathematics for Information Science �No.10 Continuous Function
	Fixed Point Theorem
	Fixed Point Semantics
	fact= fix 𝐹 = ⊔ 𝑛=0 ∞ 𝐹 𝑛 ⊥
	fact= fix 𝐹 = ⊔ 𝑛=0 ∞ 𝐹 𝑛 ⊥
	Example
	Example 2
	Semantics of Programming Language
	While Program
	Denotation of Expression
	Denotation of Expression with Variable
	Denotation of Command
	Denotation of Command (cont)
	Denotation of Command (summary)
	Continuation
	Denotation of Command (Continuation)
	Denotation of Expression (Continuation)
	Domain for Lambda Expression
	Denotation of Lambda Expression
	Homework 10
	Summary

