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Fixed Point Theorem
• Theorem: Any continuous function 𝑓𝑓:𝐷𝐷 → 𝐷𝐷 has the least fixed 

point.
• 𝑢𝑢 is a fixed point when 𝑓𝑓 𝑢𝑢 = 𝑢𝑢
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• Proof:
• ⊥ ⊑ 𝑓𝑓 ⊥

• fix: 𝐷𝐷 → 𝐷𝐷 → 𝐷𝐷
• where fix 𝑓𝑓 = ⊔𝑖𝑖=0∞ 𝑓𝑓𝑖𝑖 ⊥
• is also continuous.

• ⊔𝑖𝑖=0∞ 𝑓𝑓𝑖𝑖 ⊥ is the least fixed point.

• 𝑓𝑓 ⊔𝑖𝑖=0∞ 𝑓𝑓𝑖𝑖 ⊥
• For any fixed point 𝑢𝑢 = 𝑓𝑓 𝑢𝑢 ,

• 𝑓𝑓𝑖𝑖 ⊥ ⊑ 𝑢𝑢

⊑ 𝑓𝑓 𝑓𝑓 ⊥ ⊑ 𝑓𝑓3 ⊥ ⊑ 𝑓𝑓4 ⊥ ⊑ ⋯ ⊑ 𝑓𝑓𝑖𝑖 ⊥ ⊑ ⋯

𝑓𝑓(⊥) ⊑ 𝑓𝑓 𝑓𝑓 ⊥

=⊔𝑖𝑖=1∞ 𝑓𝑓𝑖𝑖 ⊥ =⊔𝑖𝑖=0∞ 𝑓𝑓𝑖𝑖 ⊥

• ⊥⊑ 𝑢𝑢 • 𝑓𝑓 ⊥ ⊑ 𝑓𝑓 𝑢𝑢 = 𝑢𝑢

• Therefore, ⊔𝑖𝑖=0∞ 𝑓𝑓𝑖𝑖 ⊥ ⊑ 𝑢𝑢.

• 𝑓𝑓2 ⊥ ⊑ 𝑓𝑓 𝑢𝑢 = 𝑢𝑢

fixed point

the least fixed point



Fixed Point Semantics
• Recursive programs are difficult to understand.

• fact 𝑥𝑥 ≡ if 𝑥𝑥 = 0 then 1 else 𝑥𝑥 × fact(𝑥𝑥 − 1)
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• fact:𝑁𝑁⊥ → 𝑁𝑁⊥
• fact = λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, 𝑥𝑥 × fact 𝑥𝑥 − 1
• fact is a fixed point of the following 𝐹𝐹:

• 𝐹𝐹: 𝑁𝑁⊥ → 𝑁𝑁⊥ → 𝑁𝑁⊥ → 𝑁𝑁⊥
• 𝐹𝐹 𝑓𝑓 = λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, 𝑥𝑥 × 𝑓𝑓 𝑥𝑥 − 1

• Define fact as the least fixed point of 𝐹𝐹.
• 𝐹𝐹 ⊥ =
• 𝐹𝐹2 ⊥ =
• 𝐹𝐹3 ⊥ =
• ⋮
• fix 𝐹𝐹 =⊔𝑛𝑛=0∞ 𝐹𝐹𝑛𝑛 ⊥



fact = fix 𝐹𝐹 =⊔𝑛𝑛=0∞ 𝐹𝐹𝑛𝑛 ⊥
• 𝐹𝐹 𝑓𝑓 = λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, 𝑥𝑥 × 𝑓𝑓 𝑥𝑥 − 1
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• 𝐹𝐹 ⊥ = λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, 𝑥𝑥 ×⊥ 𝑥𝑥 − 1
= λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, 𝑥𝑥 ×⊥
= λ𝑥𝑥. cond 𝑥𝑥 = 0, 1,⊥

• 𝐹𝐹2 ⊥ = λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, 𝑥𝑥 × 𝐹𝐹 ⊥ 𝑥𝑥 − 1
= λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, 𝑥𝑥 × cond 𝑥𝑥 − 1 = 0, 1,⊥
= λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, 𝑥𝑥 × cond 𝑥𝑥 = 1, 1,⊥
= λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, cond 𝑥𝑥 = 1, 𝑥𝑥 × 1, 𝑥𝑥 ×⊥
= λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, cond 𝑥𝑥 = 1, 1,⊥
= λ𝑥𝑥. cond 𝑥𝑥 ≤ 1, 1,⊥



fact = fix 𝐹𝐹 =⊔𝑛𝑛=0∞ 𝐹𝐹𝑛𝑛 ⊥
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• 𝐹𝐹𝑛𝑛+1 ⊥ = λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, 𝑥𝑥 × 𝐹𝐹𝑛𝑛 ⊥ 𝑥𝑥 − 1
= λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, 𝑥𝑥 × cond 𝑥𝑥 − 1 < 𝑛𝑛, 𝑥𝑥 − 1 !,⊥
= λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, 𝑥𝑥 × cond 𝑥𝑥 < 𝑛𝑛 + 1, 𝑥𝑥 − 1 !,⊥
= λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, cond 𝑥𝑥 < 𝑛𝑛 + 1, 𝑥𝑥 × 𝑥𝑥 − 1 !, 𝑥𝑥 ×⊥
= λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, cond 𝑥𝑥 < 𝑛𝑛 + 1, 𝑥𝑥!,⊥
= λ𝑥𝑥. cond 𝑥𝑥 < 𝑛𝑛 + 1, 𝑥𝑥!,⊥

• 𝐹𝐹3 ⊥ = λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, 𝑥𝑥 × 𝐹𝐹2 ⊥ 𝑥𝑥 − 1
= λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, 𝑥𝑥 × cond 𝑥𝑥 − 1 ≤ 1, 1,⊥
= λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, 𝑥𝑥 × cond 𝑥𝑥 ≤ 2, 1,⊥
= λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, cond 𝑥𝑥 ≤ 2, 𝑥𝑥 × 1, 𝑥𝑥 ×⊥
= λ𝑥𝑥. cond 𝑥𝑥 = 0, 1, cond 𝑥𝑥 ≤ 2, 𝑥𝑥!,⊥
= λ𝑥𝑥. cond 𝑥𝑥 ≤ 2, 𝑥𝑥!,⊥

• 𝐹𝐹𝑛𝑛 ⊥ = λ𝑥𝑥. cond 𝑥𝑥 < 𝑛𝑛, 𝑥𝑥!,⊥

• fact =⊔𝑛𝑛=0∞ 𝐹𝐹𝑛𝑛 ⊥ = λ𝑥𝑥. cond 𝑥𝑥 ≥ 0, 𝑥𝑥!,⊥



Example
• 𝑔𝑔 𝑥𝑥 ≡ if 𝑥𝑥 = 0 then 1 else 𝑔𝑔(𝑥𝑥 − 1)
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• 𝑔𝑔 ≡ 𝜆𝜆𝜆𝜆. cond 𝑥𝑥 = 0,1,𝑔𝑔 𝑥𝑥 − 1

• 𝑔𝑔 is the least fixed point of 𝐺𝐺(𝑔𝑔) ≡ 𝜆𝜆𝜆𝜆. cond 𝑥𝑥 = 0,1,𝑔𝑔 𝑥𝑥 − 1

• 𝑔𝑔 =⊔𝑛𝑛=0∞ 𝐺𝐺𝑛𝑛 ⊥

• 𝐺𝐺 ⊥ =

• 𝐺𝐺2 ⊥ =

• 𝐺𝐺3 ⊥ =

• 𝐺𝐺𝑛𝑛 ⊥ =

• 𝑔𝑔 =⊔𝑛𝑛=0∞ 𝐺𝐺𝑛𝑛 ⊥ =



Example 2
• ℎ 𝑥𝑥 ≡ if 𝑥𝑥 = 0 then 1 else ℎ(𝑥𝑥)
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• ℎ ≡ 𝜆𝜆𝜆𝜆. cond 𝑥𝑥 = 0,1,ℎ 𝑥𝑥

• ℎ is the least fixed point of 𝐻𝐻(ℎ) ≡ 𝜆𝜆𝜆𝜆. cond 𝑥𝑥 = 0,1,ℎ 𝑥𝑥

• ℎ =⊔𝑛𝑛=0∞ 𝐻𝐻𝑛𝑛 ⊥

• 𝐻𝐻 ⊥ =

• 𝐻𝐻2 ⊥ =

• 𝐻𝐻3 ⊥ =

• 𝐻𝐻𝑛𝑛 ⊥ =

• ℎ =⊔𝑛𝑛=0∞ 𝐻𝐻𝑛𝑛 ⊥ =



Semantics of Programming Language
• Syntax of a programming language

• BNF (or Context Free Grammar) is often used for formal definition.
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• Semantics of a programming language
• Natural language is ambiguous

• Formal Semantics
• Axiomatic Semantics

• Embed programs in a logic

• Operational Semantics
• Simulate programs in a well-known system

• Denotational Semantics
• Embed programs into mathematical object



While Program
• While Programs

• input(𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛)
• output(𝑦𝑦)
• 𝑥𝑥: = 𝑒𝑒
• {𝑃𝑃1;𝑃𝑃2; ⋯ ;𝑃𝑃𝑛𝑛}
• if (𝑒𝑒1 = 𝑒𝑒2) then 𝑃𝑃 else 𝑄𝑄
• while (𝑒𝑒1 = 𝑒𝑒2) 𝑃𝑃
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while
program

𝑥𝑥 ≔ 1

𝑥𝑥
while(x=1)
x:=x+1

𝐷𝐷
denotation

�

�

𝑥𝑥 + 1
�
�



Denotation of Expression
• Abstract syntax for expression 𝑒𝑒 ∈ Exp

• 𝑛𝑛 ∈ 𝑁𝑁
• 𝑒𝑒 ∷= 𝑛𝑛 𝑒𝑒1 + 𝑒𝑒2 𝑒𝑒1 − 𝑒𝑒2 𝑒𝑒1 ∗ 𝑒𝑒2 𝑒𝑒1 / 𝑒𝑒2
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Exp

1

1 + 2 ∗ 3

2 + 1

𝑁𝑁

1

7

3

denotation

ℰ

• ℰ 𝑛𝑛 = 𝑛𝑛
• ℰ 𝑒𝑒1 + 𝑒𝑒2 = ℰ 𝑒𝑒1 + ℰ 𝑒𝑒2

• ℰ 𝑒𝑒1 − 𝑒𝑒2 = ℰ 𝑒𝑒1 − ℰ 𝑒𝑒2

• ℰ 𝑒𝑒1 ∗ 𝑒𝑒2 = ℰ 𝑒𝑒1 × ℰ 𝑒𝑒2

• ℰ 𝑒𝑒1 / 𝑒𝑒2 = ℰ 𝑒𝑒1 ÷ ℰ 𝑒𝑒2



Denotation of Expression with Variable
• Abstract syntax for expression 𝑒𝑒 ∈ Exp

• 𝑛𝑛 ∈ 𝑁𝑁
• 𝑣𝑣 ∈ Var
• 𝑒𝑒 ∷= 𝑛𝑛 | 𝑣𝑣 𝑒𝑒1 + 𝑒𝑒2 𝑒𝑒1 − 𝑒𝑒2 𝑒𝑒1 ∗ 𝑒𝑒2 𝑒𝑒1 / 𝑒𝑒2
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• ℰ 𝑛𝑛 𝜎𝜎 = 𝑛𝑛 • ℰ 𝑒𝑒1 + 𝑒𝑒2 𝜎𝜎 = ℰ 𝑒𝑒1 𝜎𝜎 + ℰ 𝑒𝑒2 𝜎𝜎
• ℰ 𝑒𝑒1 − 𝑒𝑒2 𝜎𝜎 = ℰ 𝑒𝑒1 𝜎𝜎 − ℰ 𝑒𝑒2 𝜎𝜎
• ℰ 𝑒𝑒1 ∗ 𝑒𝑒2 𝜎𝜎 = ℰ 𝑒𝑒1 𝜎𝜎 × ℰ 𝑒𝑒2 𝜎𝜎
• ℰ 𝑒𝑒1 / 𝑒𝑒2 𝜎𝜎 = ℰ 𝑒𝑒1 𝜎𝜎 ÷ ℰ 𝑒𝑒2 𝜎𝜎

• Denotation of 𝑒𝑒 ∈ Exp may depend on the value of variables.

• State 𝑆𝑆
• 𝑆𝑆 = [Var⊥ → 𝑁𝑁⊥]
• 𝜎𝜎 ∈ 𝑆𝑆 maps variables to their value.

𝑥𝑥
𝑦𝑦
𝑎𝑎

1
5
⊥

𝜎𝜎Var⊥ 𝑁𝑁⊥

• Denotation of Exp
• ℰ ∈ Exp → 𝑆𝑆 → 𝑁𝑁⊥

• ℰ 𝑣𝑣 𝜎𝜎 = 𝜎𝜎 𝑣𝑣



Denotation of Command
• Abstract syntax for command 𝑐𝑐 ∈ Cmd

• 𝑐𝑐 ∷= null 𝑥𝑥 ≔ 𝑒𝑒 if 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐1 else 𝑐𝑐2 while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 𝑐𝑐1; 𝑐𝑐2
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• 𝒞𝒞 null 𝜎𝜎 = 𝜎𝜎

𝒞𝒞 𝑐𝑐
𝑆𝑆 𝑆𝑆

• Denotation of Cmd
• 𝒞𝒞 ∈ Cmd → 𝑆𝑆 → 𝑆𝑆

• 𝒞𝒞 𝑐𝑐1; 𝑐𝑐2 𝜎𝜎 = 𝒞𝒞 𝑐𝑐2 𝒞𝒞 𝑐𝑐1 𝜎𝜎

• 𝒞𝒞 𝑐𝑐1; 𝑐𝑐2 = 𝒞𝒞 𝑐𝑐2 ∘ 𝒞𝒞 𝑐𝑐1

𝒞𝒞 𝑐𝑐1𝑆𝑆 𝑆𝑆
𝒞𝒞 𝑐𝑐2 𝑆𝑆

𝒞𝒞 𝑐𝑐1; 𝑐𝑐2

• 𝒞𝒞 𝑥𝑥 ≔ 𝑒𝑒 𝜎𝜎 = 𝜎𝜎[ℰ 𝑒𝑒 𝜎𝜎/𝑥𝑥] 𝜎𝜎 𝑛𝑛/𝑥𝑥 𝑦𝑦 =
𝑛𝑛

𝜎𝜎 𝑦𝑦

(If 𝑦𝑦 = 𝑥𝑥)

(otherwise)

• 𝒞𝒞 if 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐1 else 𝑐𝑐2 𝜎𝜎 = cond ℰ 𝑒𝑒1 𝜎𝜎 = ℰ 𝑒𝑒2 𝜎𝜎,𝒞𝒞 𝑐𝑐1 𝜎𝜎,𝒞𝒞 𝑐𝑐2 𝜎𝜎



Denotation of Command (cont)
• 𝒞𝒞 while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 𝜎𝜎
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= cond ℰ 𝑒𝑒1 𝜎𝜎 = ℰ 𝑒𝑒2 𝜎𝜎,𝒞𝒞 𝑐𝑐; while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 𝜎𝜎,𝒞𝒞 null 𝜎𝜎

• while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 ≡ if 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐; while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 else null

• 𝒞𝒞 while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 𝜎𝜎 = 𝒞𝒞 if 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐; while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 else null 𝜎𝜎

= cond ℰ 𝑒𝑒1 𝜎𝜎 = ℰ 𝑒𝑒2 𝜎𝜎,𝒞𝒞 while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 𝒞𝒞 𝑐𝑐 𝜎𝜎 ,𝜎𝜎

• 𝒞𝒞 while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 is the fixed point of
• 𝜆𝜆𝜆𝜆. 𝜆𝜆𝜆𝜆. cond ℰ 𝑒𝑒1 𝜎𝜎 = ℰ 𝑒𝑒2 𝜎𝜎,𝑤𝑤 𝒞𝒞 𝑐𝑐 𝜎𝜎 ,𝜎𝜎

• 𝒞𝒞 while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 = 𝜆𝜆𝜆𝜆. cond ℰ 𝑒𝑒1 𝜎𝜎 = ℰ 𝑒𝑒2 𝜎𝜎,𝒞𝒞 while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 𝒞𝒞 𝑐𝑐 𝜎𝜎 ,𝜎𝜎

• 𝒞𝒞 while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 = fix 𝜆𝜆𝜆𝜆. 𝜆𝜆𝜆𝜆. cond ℰ 𝑒𝑒1 𝜎𝜎 = ℰ 𝑒𝑒2 𝜎𝜎,𝑤𝑤 𝒞𝒞 𝑐𝑐 𝜎𝜎 ,𝜎𝜎

fix(𝑓𝑓) ≡ ⊔𝑖𝑖=0∞ 𝑓𝑓𝑖𝑖 ⊥



Denotation of Command (summary)
• Abstract syntax for command 𝑐𝑐 ∈ Cmd

• 𝑐𝑐 ∷= null 𝑥𝑥 ≔ 𝑒𝑒 if 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐1 else 𝑐𝑐2 while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 𝑐𝑐1; 𝑐𝑐2
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• 𝒞𝒞 null 𝜎𝜎 = 𝜎𝜎

𝒞𝒞 𝑐𝑐
𝑆𝑆 𝑆𝑆

• Denotation of Cmd
• 𝒞𝒞 ∈ Cmd → 𝑆𝑆 → 𝑆𝑆

• 𝒞𝒞 𝑐𝑐1; 𝑐𝑐2 = 𝒞𝒞 𝑐𝑐2 ∘ 𝒞𝒞 𝑐𝑐1

• 𝒞𝒞 𝑥𝑥 ≔ 𝑒𝑒 𝜎𝜎 = 𝜎𝜎[ℰ 𝑒𝑒 𝜎𝜎/𝑥𝑥]

• 𝒞𝒞 if 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐1 else 𝑐𝑐2 𝜎𝜎 = cond ℰ 𝑒𝑒1 𝜎𝜎 = ℰ 𝑒𝑒2 𝜎𝜎,𝒞𝒞 𝑐𝑐1 𝜎𝜎,𝒞𝒞 𝑐𝑐2 𝜎𝜎

• 𝒞𝒞 while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 = fix 𝜆𝜆𝜆𝜆. 𝜆𝜆𝜆𝜆. cond ℰ 𝑒𝑒1 𝜎𝜎 = ℰ 𝑒𝑒2 𝜎𝜎,𝑤𝑤 𝒞𝒞 𝑐𝑐 𝜎𝜎 ,𝜎𝜎



Continuation
• Difficult to handle side effect

• 𝒞𝒞 𝑥𝑥 ≔ 𝑒𝑒 𝜎𝜎 = 𝜎𝜎[ℰ 𝑒𝑒 𝜎𝜎/𝑥𝑥]
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𝒞𝒞 𝑐𝑐 continuation
𝑆𝑆 𝑆𝑆

continuation

𝑆𝑆 𝑆𝑆

• Continuation is
• the rest of the computation
• 𝐶𝐶 = 𝑆𝑆 → 𝑆𝑆

• 𝒞𝒞 𝑐𝑐
• receive the rest of the computation
• returns the computation including 𝑐𝑐
• 𝒞𝒞 𝑐𝑐 ∈ 𝐶𝐶 → 𝐶𝐶

• ℰ 𝑒𝑒 ∈ 𝐾𝐾 → 𝐶𝐶
• 𝐾𝐾 = 𝑁𝑁⊥ → 𝐶𝐶
• 𝐾𝐾 is continuation of expression

𝒞𝒞 𝑐𝑐
𝑆𝑆 → 𝑆𝑆 𝑆𝑆 → 𝑆𝑆

ℰ 𝑒𝑒
𝑁𝑁⊥ → 𝑆𝑆 → 𝑆𝑆 𝑆𝑆 → 𝑆𝑆



Denotation of Command (Continuation)
• Abstract syntax for command 𝑐𝑐 ∈ Cmd

• 𝑐𝑐 ∷= null 𝑥𝑥 ≔ 𝑒𝑒 if 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐1 else 𝑐𝑐2 while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 𝑐𝑐1; 𝑐𝑐2
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• 𝒞𝒞 null 𝜃𝜃 = 𝜃𝜃

𝒞𝒞 𝑐𝑐
𝑆𝑆 → 𝑆𝑆 𝑆𝑆 → 𝑆𝑆

• Denotation of Cmd
• 𝐶𝐶 = 𝑆𝑆 → 𝑆𝑆
• 𝒞𝒞 ∈ Cmd → 𝐶𝐶 → 𝐶𝐶

• 𝒞𝒞 𝑐𝑐1; 𝑐𝑐2 𝜃𝜃 = 𝒞𝒞 𝑐𝑐1 𝒞𝒞 𝑐𝑐2 𝜃𝜃

• 𝒞𝒞 𝑥𝑥 ≔ 𝑒𝑒 𝜃𝜃𝜃𝜃 = ℰ 𝑒𝑒 (𝜆𝜆𝜆𝜆. 𝜃𝜃 𝜎𝜎 𝑛𝑛/𝑥𝑥

• 𝒞𝒞 if 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐1 else 𝑐𝑐2 𝜃𝜃 = ℰ 𝑒𝑒1 𝜆𝜆𝑛𝑛1.ℰ 𝑒𝑒2 𝜆𝜆𝑛𝑛2. cond 𝑛𝑛1 = 𝑛𝑛2,𝒞𝒞 𝑐𝑐1 𝜃𝜃,𝒞𝒞 𝑐𝑐2 𝜃𝜃

• 𝒞𝒞 while 𝑒𝑒1 = 𝑒𝑒2 𝑐𝑐 = fix 𝜆𝜆𝜆𝜆. 𝜆𝜆𝜆𝜆. ℰ 𝑒𝑒1 𝜆𝜆𝑛𝑛1. ℰ 𝑒𝑒2 𝜆𝜆𝑛𝑛2. cond 𝑛𝑛1 = 𝑛𝑛2,𝒞𝒞 𝑐𝑐 𝑤𝑤 𝜃𝜃 , 𝜃𝜃

• 𝒞𝒞 𝑐𝑐 𝜃𝜃𝜃𝜃 = 𝜃𝜃 𝜎𝜎′

• Execute a command 𝑐𝑐 in state 𝜎𝜎 and the modified state 𝜎𝜎𝜎 is passed to 𝜃𝜃.



Denotation of Expression (Continuation)
• Abstract syntax for expression 𝑒𝑒 ∈ Exp

• 𝑛𝑛 ∈ 𝑁𝑁
• 𝑣𝑣 ∈ Var
• 𝑒𝑒 ∷= 𝑛𝑛 | 𝑣𝑣 𝑒𝑒1 + 𝑒𝑒2 𝑒𝑒1 − 𝑒𝑒2 𝑒𝑒1 ∗ 𝑒𝑒2 𝑒𝑒1 / 𝑒𝑒2
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• ℰ 𝑛𝑛 𝜅𝜅𝜅𝜅 = 𝜅𝜅(𝑛𝑛)(𝜎𝜎)

• ℰ 𝑒𝑒1 + 𝑒𝑒2 𝜅𝜅𝜅𝜅 = ℰ 𝑒𝑒1 𝜆𝜆𝑛𝑛1.ℰ 𝑒𝑒2 𝜆𝜆𝑛𝑛2. 𝜅𝜅 𝑛𝑛1 + 𝑛𝑛2 𝜎𝜎

• Denotation of Exp
• ℰ ∈ Exp → 𝐾𝐾 → 𝐶𝐶
• 𝐾𝐾 = 𝑁𝑁⊥ → 𝐶𝐶

• ℰ 𝑣𝑣 𝜅𝜅𝜅𝜅 = 𝜅𝜅 𝜎𝜎 𝑣𝑣 𝜎𝜎

• ℰ 𝑣𝑣 + + 𝜅𝜅𝜅𝜅 = 𝜅𝜅 𝜎𝜎 𝑣𝑣 𝜎𝜎[𝜎𝜎 𝑣𝑣 + 1/𝑣𝑣]

• ℰ 𝑒𝑒 𝜅𝜅𝜅𝜅 = 𝜅𝜅 𝑛𝑛 𝜎𝜎𝜎
• Calculate the value of 𝑒𝑒 in state 𝜎𝜎 and the result 𝑛𝑛 is passed to 𝜅𝜅 with the 

modified state 𝜎𝜎𝜎.

| 𝑣𝑣 + +



Domain for Lambda Expression
• Construct a domain 𝐷𝐷 where 𝐷𝐷 ≅ 𝐷𝐷 → 𝐷𝐷

• 𝐷𝐷0 = � ⊥

• 𝐷𝐷1 = 𝐷𝐷0 → 𝐷𝐷0
• 𝐷𝐷2 = 𝐷𝐷1 → 𝐷𝐷1
• ⋯
• 𝐷𝐷𝑛𝑛+1 = 𝐷𝐷𝑛𝑛 → 𝐷𝐷𝑛𝑛
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• 𝐷𝐷∞ = 𝑑𝑑0,𝑑𝑑1,⋯ ,𝑑𝑑𝑛𝑛,⋯ 𝑑𝑑𝑛𝑛 ∈ 𝐷𝐷𝑛𝑛 , 𝜋𝜋𝑛𝑛 𝑑𝑑𝑛𝑛+1 = 𝑑𝑑𝑛𝑛}
• 𝐷𝐷𝑛𝑛 ⊲ 𝐷𝐷∞
• 𝐷𝐷∞ ≅ D∞ → 𝐷𝐷∞

• 𝐷𝐷0 ⊲ 𝐷𝐷1 ⊲ 𝐷𝐷2 ⊲ 𝐷𝐷3 ⋯ ⊲ 𝐷𝐷𝑛𝑛 ⊲ ⋯
• 𝜋𝜋0 ∈ 𝐷𝐷1 → 𝐷𝐷0 = 𝐷𝐷0 → 𝐷𝐷0 → 𝐷𝐷0 𝜋𝜋0 𝑑𝑑1 = 𝑑𝑑1 ⊥𝐷𝐷0
• 𝜄𝜄0 ∈ 𝐷𝐷0 → 𝐷𝐷1 = 𝐷𝐷0 → 𝐷𝐷0 → 𝐷𝐷0 𝜄𝜄0 𝑑𝑑0 = 𝜆𝜆𝑥𝑥1 ∈ 𝐷𝐷0.𝑑𝑑0

• 𝜋𝜋𝑛𝑛 ∈ 𝐷𝐷𝑛𝑛+1 → 𝐷𝐷𝑛𝑛 = 𝐷𝐷𝑛𝑛 → 𝐷𝐷𝑛𝑛 → 𝐷𝐷𝑛𝑛 𝜋𝜋𝑛𝑛 𝑑𝑑𝑛𝑛+1 = 𝜋𝜋𝑛𝑛−1 ∘ 𝑑𝑑𝑛𝑛+1 ∘ 𝜄𝜄𝑛𝑛−1

𝐷𝐷0 𝐷𝐷1

𝜋𝜋0

𝜄𝜄0

𝐷𝐷𝑛𝑛 𝐷𝐷𝑛𝑛+1𝐷𝐷𝑛𝑛−1
𝜋𝜋𝑛𝑛

𝑑𝑑𝑛𝑛+1∈

𝐷𝐷𝑛𝑛

𝑑𝑑𝑛𝑛+1

𝐷𝐷𝑛𝑛−1

𝜄𝜄𝑛𝑛−1

𝜋𝜋𝑛𝑛−1 𝜄𝜄𝑛𝑛 𝐷𝐷𝑛𝑛+1
𝑑𝑑𝑛𝑛

∈

𝑑𝑑𝑛𝑛

• 𝜄𝜄𝑛𝑛 ∈ 𝐷𝐷𝑛𝑛 → 𝐷𝐷𝑛𝑛+1 = 𝐷𝐷𝑛𝑛 → 𝐷𝐷𝑛𝑛 → 𝐷𝐷𝑛𝑛 𝜄𝜄𝑛𝑛 𝑑𝑑𝑛𝑛 = 𝜄𝜄𝑛𝑛−1 ∘ 𝑑𝑑𝑛𝑛 ∘ 𝜋𝜋𝑛𝑛−1



Denotation of Lambda Expression
• Abstract syntax for lambda expression 𝑀𝑀 ∈ Λ

• 𝑥𝑥 ∈ Var
• 𝑀𝑀 ∷= 𝑥𝑥 | 𝜆𝜆𝜆𝜆.𝑀𝑀 | 𝑀𝑀1 𝑀𝑀2
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• 𝐷𝐷∞ ≅ D∞ → 𝐷𝐷∞
• 𝜋𝜋 ∈ 𝐷𝐷∞ → 𝐷𝐷∞ → 𝐷𝐷∞
• 𝜄𝜄 ∈ 𝐷𝐷∞ → 𝐷𝐷∞ → 𝐷𝐷∞

• Denotation of Lambda Expression
• 𝜎𝜎 ∈ 𝑆𝑆 = Var → 𝐷𝐷∞
• ℒ ∈ Λ → 𝑆𝑆 → 𝐷𝐷∞

• ℒ 𝑥𝑥 𝜎𝜎 = 𝜎𝜎 𝑥𝑥
• ℒ 𝜆𝜆𝜆𝜆.𝑀𝑀 𝜎𝜎 = 𝜋𝜋 𝜆𝜆𝜆𝜆 ∈ 𝐷𝐷∞.ℒ 𝑀𝑀 𝜎𝜎[𝑣𝑣/𝑥𝑥]

• ℒ 𝑀𝑀1 𝑀𝑀2 𝜎𝜎 = 𝜄𝜄 ℒ 𝑀𝑀1 𝜎𝜎 ℒ 𝑀𝑀2 𝜎𝜎



Homework 10
• Find out what the following functions actually are using fixed point 

semantics. 
• 𝑓𝑓 𝑥𝑥 ≡ if 𝑥𝑥 = 0 then 0 else 𝑓𝑓 𝑓𝑓 𝑥𝑥 − 1 + 1
• 𝑔𝑔 𝑥𝑥 ≡ if 𝑥𝑥 = 0 then 1 else 𝑔𝑔 𝑔𝑔 𝑥𝑥 − 1 + 1

• Hint:
• 𝑓𝑓 is the least fixed point of

𝐹𝐹 𝑓𝑓 = 𝜆𝜆𝜆𝜆. cond 𝑥𝑥 = 0, 0, 𝑓𝑓 𝑓𝑓 𝑥𝑥 − 1 + 1
Calculate ⊔𝑛𝑛=0∞ 𝐹𝐹𝑛𝑛 ⊥

• 𝑔𝑔 is the least fixed point of
𝐺𝐺 𝑔𝑔 = 𝜆𝜆𝜆𝜆. cond 𝑥𝑥 = 0, 1,𝑔𝑔 𝑔𝑔 𝑥𝑥 − 1 + 1

Calculate ⊔𝑛𝑛=0∞ 𝐺𝐺𝑛𝑛 ⊥
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Summary
• Fixed point

• Fixed point theorem
• Fixed point semantics for recursive functions

• Semantics of Programming Language
• Axiomatic Semantics
• Operational Semantics
• Denotational Semantics

• Denotational Semantics
• Semantic Function
• Continuation
• 𝐷𝐷∞
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