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Set Theory
• Set Theory

• Foundation of Modern Mathematics
• a set ≡ a collection of elements with some property

• ∅
• 𝐴𝐴 ∪ 𝐵𝐵
• 𝐴𝐴 ∩ 𝐵𝐵
• 𝐴𝐴𝑐𝑐

• 𝑥𝑥 ∈ 𝐴𝐴 | logical formula about 𝑥𝑥
• Description of elements is important: i.e. when 𝑥𝑥 ∈ 𝐴𝐴
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• Limit of set theory
• Russell's Paradox
• The collection of all sets is not a set.
• 𝑅𝑅 = 𝑥𝑥 𝑥𝑥 ∉ 𝑥𝑥}
• 𝑅𝑅 ∈ 𝑅𝑅 or 𝑅𝑅 ∉ 𝑅𝑅 ?



Category Theory
• Alternative foundation of Mathematics
• Some call it Abstract Nonsense.
• Describe things with relationship with others.
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• Unify many concepts in one.
• Can see symmetry easily.

Set Theory Category Theory
𝑥𝑥 ∈ 𝐴𝐴 𝐴𝐴 → 𝐵𝐵

description of inside description from outside
contents actions



Category
• A category 𝐶𝐶 consists of:
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• A collection of objects: 𝑪𝑪 = 𝐴𝐴,𝐵𝐵,𝐶𝐶, …

• For objects 𝐴𝐴 and 𝐵𝐵, a collection of arrows (or morphisms):
hom𝑪𝑪 𝐴𝐴,𝐵𝐵 = {𝑓𝑓,𝑔𝑔, ℎ, … }

• If 𝑓𝑓 ∈ hom𝑪𝑪(𝐴𝐴,𝐵𝐵), we may write it as: 𝑓𝑓:𝐴𝐴 → 𝐵𝐵
• 𝐴𝐴 is the domain of 𝑓𝑓
• 𝐵𝐵 is the codomain (or range) of 𝑓𝑓

𝑪𝑪

𝐴𝐴 𝐵𝐵 𝐶𝐶
𝑓𝑓 𝑔𝑔

ℎ 𝑘𝑘



Category (cont)
• A category 𝑪𝑪 mush satisfy the following properties:
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𝐴𝐴 𝐵𝐵

𝐶𝐶

𝑓𝑓

𝑔𝑔

𝐴𝐴 𝐵𝐵

𝐶𝐶

𝑓𝑓

𝑔𝑔

𝐷𝐷
ℎ

ℎ ∘ 𝑔𝑔 ∘ 𝑓𝑓

(ℎ ∘ 𝑔𝑔) ∘ 𝑓𝑓

𝐴𝐴 𝐵𝐵

𝐵𝐵

𝑓𝑓

1𝐵𝐵

𝐴𝐴
1𝐴𝐴

• For 𝑓𝑓:𝐴𝐴 → 𝐵𝐵 and 𝑔𝑔:𝐵𝐵 → 𝐶𝐶,
𝑔𝑔 ∘ 𝑓𝑓:𝐴𝐴 → 𝐶𝐶

• For 𝑓𝑓:𝐴𝐴 → 𝐵𝐵, 𝑔𝑔:𝐵𝐵 → 𝐶𝐶 and 𝑓𝑓:𝐶𝐶 → 𝐷𝐷,
ℎ ∘ 𝑔𝑔 ∘ 𝑓𝑓 = (ℎ ∘ 𝑔𝑔) ∘ 𝑓𝑓

• For each object 𝐴𝐴, there exists an 
identity arrow 1𝐴𝐴:𝐴𝐴 → 𝐴𝐴 and for 𝑓𝑓:𝐴𝐴 → 𝐵𝐵, 

𝑓𝑓 ∘ 1𝐴𝐴 = 𝑓𝑓 and 1𝐵𝐵 ∘ 𝑓𝑓 = 𝑓𝑓



Example of Category
• Set: the category of sets

• objects: sets
• arrows: functions
• ∘ is the function composition
• 1𝐴𝐴 is the identity function of 𝐴𝐴
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(𝐺𝐺, � , 𝑒𝑒, −1): group
• 𝑥𝑥 � 𝑦𝑦 � 𝑧𝑧 = 𝑥𝑥 � 𝑦𝑦 � 𝑧𝑧
• 𝑥𝑥 ⋅ 𝑒𝑒 = 𝑒𝑒 ⋅ 𝑥𝑥 = 𝑥𝑥
• 𝑥𝑥 � 𝑥𝑥−1 = 𝑥𝑥−1 � 𝑥𝑥 = 𝑒𝑒

homomorphism: 𝑓𝑓:𝐺𝐺 → 𝐻𝐻
• 𝑓𝑓 𝑥𝑥 � 𝑦𝑦 = 𝑓𝑓 𝑥𝑥 � 𝑓𝑓 𝑦𝑦

• Grp: the category of groups
• objects: groups (𝐺𝐺, � , 𝑒𝑒, −1)
• arrows: homomorphisms
• ∘ is the function composition
• 1𝐴𝐴 is the identity function of 𝐴𝐴

• CPO: the category of complete partial ordered sets
• objects: CPO
• arrows: continuous functions
• ∘ is the function composition.
• 1𝐷𝐷 is the identity function of 𝐷𝐷



Example of Category (cont.)
• Monoid 𝑀𝑀,� , 𝑒𝑒 as a 

category
• object: only one object
• arrows: 𝑀𝑀 (i.e. elements in 
𝑀𝑀)

• ∘ is �
• 1 is 𝑒𝑒
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(𝑀𝑀, � , 𝑒𝑒): monoid
• 𝑥𝑥 � 𝑦𝑦 � 𝑧𝑧 = 𝑥𝑥 � 𝑦𝑦 � 𝑧𝑧
• 𝑥𝑥 ⋅ 𝑒𝑒 = 𝑒𝑒 ⋅ 𝑥𝑥 = 𝑥𝑥

(𝐷𝐷,  ⊑): partially ordered set
• 𝑥𝑥⊑𝑥𝑥
• if 𝑥𝑥⊑𝑦𝑦 and 𝑦𝑦⊑𝑧𝑧, then 𝑥𝑥⊑𝑧𝑧
• if 𝑥𝑥⊑𝑦𝑦 and 𝑦𝑦⊑𝑥𝑥, then 𝑥𝑥=𝑦𝑦

• Partially ordered set (𝐷𝐷,⊑) as a 
category
• objects: 𝐷𝐷 (i.e. elements in 𝐷𝐷)
• arrows: ⊑ (i.e. at most one arrow 

from 𝑥𝑥 → 𝑦𝑦)
• ∘ is ``if 𝑥𝑥 ⊑ 𝑦𝑦 and 𝑦𝑦 ⊑ 𝑧𝑧, then 𝑥𝑥 ⊑ 𝑧𝑧''
• 1𝑥𝑥 is ``𝑥𝑥 ⊑ 𝑥𝑥''

�𝑥𝑥 𝑦𝑦

𝑥𝑥

𝑦𝑦 𝑧𝑧



Dual Category
• Dual Category 𝑪𝑪𝑜𝑜𝑜𝑜 of category 𝑪𝑪

• 𝑪𝑪𝑜𝑜𝑜𝑜 objects = 𝑪𝑪 objects
• 𝑪𝑪𝑜𝑜𝑜𝑜 arrows: hom𝑪𝑪𝑜𝑜𝑜𝑜 𝐴𝐴,𝐵𝐵 = hom𝑪𝑪(𝐵𝐵,𝐴𝐴)
• Reverse the direction of arrows.
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𝑪𝑪

𝐴𝐴 𝐵𝐵 𝐶𝐶
𝑓𝑓 𝑔𝑔

𝑪𝑪𝑜𝑜𝑜𝑜

𝐴𝐴 𝐵𝐵 𝐶𝐶
𝑓𝑓 𝑔𝑔

• Any property which is true in category 𝑪𝑪 is also true in its 
dual category 𝑪𝑪𝑜𝑜𝑜𝑜.
• (𝑪𝑪𝑜𝑜𝑜𝑜)𝑜𝑜𝑜𝑜 = 𝑪𝑪



Mono Morphism
• One-to-one function

• A function 𝑓𝑓:𝐴𝐴 → 𝐵𝐵 is one-to-one
⟺𝑎𝑎 = 𝑏𝑏 if 𝑓𝑓 𝑎𝑎 = 𝑓𝑓(𝑏𝑏)

9

𝐷𝐷 𝐴𝐴 𝐵𝐵
𝑓𝑓

𝑔𝑔
ℎ

• Mono morphism
• 𝑓𝑓:𝐴𝐴 → 𝐵𝐵 is mono-morphism

⟺ for any object D and any arrows 𝑔𝑔:𝐷𝐷 → 𝐴𝐴 and ℎ:𝐷𝐷 → 𝐴𝐴, if 𝑓𝑓 ∘ 𝑔𝑔 = 𝑓𝑓 ∘ ℎ, then 𝑔𝑔 = ℎ.

𝑓𝑓 𝑎𝑎

𝐴𝐴 𝐵𝐵

𝑎𝑎

𝑏𝑏

𝑓𝑓 𝑎𝑎

𝑓𝑓(𝑏𝑏)

=



Epi Morphism
• Onto function

• A function 𝑓𝑓:𝐴𝐴 → 𝐵𝐵 is onto
⟺ for any 𝑏𝑏 ∈ 𝐵𝐵, there exists 𝑎𝑎 ∈ 𝐵𝐵 such that 𝑓𝑓 𝑎𝑎 = 𝑏𝑏.
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• Epi morphism
• 𝑓𝑓:𝐴𝐴 → 𝐵𝐵 is epi-morphism

⟺ for any object D and any arrows 𝑔𝑔:𝐵𝐵 → 𝐷𝐷 and ℎ:𝐵𝐵 → 𝐷𝐷, if 𝑔𝑔 ∘ 𝑓𝑓 = ℎ ∘ 𝑓𝑓, then 𝑔𝑔 = ℎ.

𝑓𝑓 𝑎𝑎

𝐴𝐴 𝐵𝐵

𝑎𝑎 𝑏𝑏 = 𝑓𝑓(𝑎𝑎)

𝐷𝐷𝐴𝐴 𝐵𝐵
𝑓𝑓

𝑔𝑔
ℎ



Mono and Epi
• Mono

• 𝑓𝑓:𝐴𝐴 → 𝐵𝐵 is mono-morphism
⟺ for any object D and any arrows 𝑔𝑔:𝐷𝐷 → 𝐴𝐴 and ℎ:𝐷𝐷 → 𝐴𝐴, if 𝑓𝑓 ∘ 𝑔𝑔 = 𝑓𝑓 ∘ ℎ, then 𝑔𝑔 = ℎ.
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𝐷𝐷 𝐴𝐴 𝐵𝐵
𝑓𝑓

𝑔𝑔
ℎ

• Epi
• 𝑓𝑓:𝐴𝐴 → 𝐵𝐵 is epi-morphism

⟺ for any object D and any arrows 𝑔𝑔:𝐵𝐵 → 𝐷𝐷 and ℎ:𝐵𝐵 → 𝐷𝐷, if 𝑔𝑔 ∘ 𝑓𝑓 = ℎ ∘ 𝑓𝑓, then 𝑔𝑔 = ℎ.

𝐷𝐷𝐴𝐴 𝐵𝐵
𝑓𝑓

𝑔𝑔
ℎ

Mono in 𝑪𝑪𝑜𝑜𝑜𝑜 is epi in 𝑪𝑪.

Epi in 𝑪𝑪𝑜𝑜𝑜𝑜 is mono in 𝑪𝑪.



Isomorphic
• Isomorphic (iso）

• Object 𝐴𝐴 and 𝐵𝐵 is are isomorphic
⟺ there are 𝑓𝑓:𝐴𝐴 → 𝐵𝐵 and 𝑔𝑔:𝐵𝐵 → 𝐴𝐴 such that 𝑔𝑔 ∘ 𝑓𝑓 = 1𝐴𝐴 and 𝑓𝑓 ∘ 𝑔𝑔 = 1𝐵𝐵.
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𝐴𝐴 𝐵𝐵
𝑓𝑓

𝑔𝑔

Isomorphic objects play the same role in 𝑪𝑪.



Initial and Final Objects
• Initial object 𝐼𝐼

• for any object 𝐴𝐴, there is a unique arrow from 𝐼𝐼 to 𝐴𝐴.
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𝐼𝐼 𝐴𝐴
!

• Final object 𝐹𝐹
• for any object 𝐴𝐴, there is a unique arrow from 𝐴𝐴 to 𝐹𝐹.

𝐴𝐴 𝐹𝐹
!

Initial Object Final Object

Set
Grp
CPO

Partially Ordered Set



Uniqueness of Initial Object
• Theorem: The initial object, if it exists, is unique up to isomorphic.
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• Proof:  Assume there are two initial objects 𝐼𝐼 and 𝐼𝐼𝐼.
• Since 𝐼𝐼 is an initial object, there is a unique arrow 𝑓𝑓 from 𝐼𝐼 to 𝐼𝐼𝐼.

𝐼𝐼 𝐼𝐼𝐼
𝑓𝑓

𝐼𝐼
𝑔𝑔

• Since 𝐼𝐼𝐼 is an initial object, there is a unique arrow 𝑔𝑔 from 𝐼𝐼𝐼 to 𝐼𝐼.

1𝐼𝐼

• 𝑔𝑔 ∘ 𝑓𝑓 is an arrow from 𝐼𝐼 to 𝐼𝐼.

• Since 𝐼𝐼 is an initial object, it should be the unique arrow 1𝐼𝐼.
• 𝑔𝑔 ∘ 𝑓𝑓 = 1𝐼𝐼

• Similarly, 𝑓𝑓 ∘ 𝑔𝑔 = 1𝐼𝐼𝐼.

• Therefore 𝐼𝐼 and 𝐼𝐼𝐼 are isomorphic.  QED

• Dual Theorem: The final object, if it exists, is unique up to isomorphic.



Product and Co-Product
• 𝐴𝐴 × 𝐵𝐵 is the product of 𝐴𝐴
and 𝐵𝐵 ⟺

• 𝐴𝐴 + 𝐵𝐵 is the co-product of 
𝐴𝐴 and 𝐵𝐵 ⟺
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𝐴𝐴 × 𝐵𝐵𝐴𝐴 𝐵𝐵
𝜋𝜋1 𝜋𝜋2

𝐶𝐶
𝑓𝑓 𝑔𝑔

!ℎ

↻↺

𝜋𝜋1 ∘ ℎ = 𝑓𝑓 𝜋𝜋2 ∘ ℎ = 𝑔𝑔

𝐴𝐴 + 𝐵𝐵𝐴𝐴 𝐵𝐵
𝜄𝜄1 𝜄𝜄2

𝐶𝐶
𝑓𝑓 𝑔𝑔

!ℎ

↻ ↺

ℎ ∘ 𝜄𝜄1 = 𝑓𝑓 ℎ ∘ 𝜄𝜄2 = 𝑔𝑔

• There are two arrows 𝜋𝜋1:𝐴𝐴 × 𝐵𝐵 → 𝐴𝐴
and 𝜋𝜋2:𝐴𝐴 × 𝐵𝐵 → 𝐵𝐵.

• There are two arrows 𝜄𝜄1:𝐴𝐴 → 𝐴𝐴 + 𝐵𝐵
and 𝜄𝜄2:𝐵𝐵 → 𝐴𝐴 + 𝐵𝐵. :

• For any object 𝐶𝐶 and arrows 𝑓𝑓:𝐶𝐶 →
𝐴𝐴 and 𝑔𝑔:𝐶𝐶 → 𝐵𝐵,
there exists a unique arrow ℎ:𝐶𝐶 →
𝐴𝐴 × 𝐵𝐵 such that the following 
diagram commutes:

• For any object 𝐶𝐶 and arrows 𝑓𝑓:𝐴𝐴 →
𝐶𝐶 and 𝑔𝑔:𝐵𝐵 → 𝐶𝐶,
there exists a unique arrow ℎ:𝐴𝐴 +
𝐵𝐵 → 𝐶𝐶 such that the following 
diagram commutes:



Product and Co-Product
Product Co-Product

Set

• 𝐴𝐴 × 𝐵𝐵 = { 𝑥𝑥,𝑦𝑦 |𝑥𝑥 ∈ 𝐴𝐴 and 𝑦𝑦 ∈ 𝐵𝐵}
• 𝜋𝜋1 𝑥𝑥, 𝑦𝑦 = 𝑥𝑥
• 𝜋𝜋2 𝑥𝑥, 𝑦𝑦 = 𝑦𝑦
• For 𝑓𝑓:𝐶𝐶 → 𝐴𝐴 and 𝑔𝑔:𝐶𝐶 → 𝐵𝐵, 
ℎ 𝑧𝑧 = 𝑓𝑓 𝑧𝑧 ,𝑔𝑔 𝑧𝑧

• 𝐴𝐴 + 𝐵𝐵 = 𝑥𝑥, 1 𝑥𝑥 ∈ 𝐴𝐴 ∪ 𝑦𝑦, 2 𝑦𝑦 ∈ 𝐵𝐵
• 𝜄𝜄1 𝑥𝑥 = 𝑥𝑥, 1
• 𝜄𝜄2 𝑦𝑦 = 𝑦𝑦, 2
• For 𝑓𝑓:𝐴𝐴 → 𝐶𝐶 and 𝑔𝑔:𝐵𝐵 → 𝐶𝐶, 
ℎ 𝑥𝑥, 1 = 𝑓𝑓 𝑥𝑥 and ℎ 𝑦𝑦, 2 = 𝑔𝑔 𝑦𝑦
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• Theorem: If product 𝐴𝐴 × 𝐵𝐵 exists, it is unique up to isomorphic.
• Dual Theorem: If co-product 𝐴𝐴 + 𝐵𝐵 exists, it is unique up to isomorphic.

Partially
Ordere
d Set 
𝐷𝐷,⊑

• 𝑥𝑥 × 𝑦𝑦 = 𝑥𝑥 ⊓ 𝑦𝑦
• 𝜋𝜋1: 𝑥𝑥 ⊓ 𝑦𝑦 ⊑ 𝑥𝑥
• 𝜋𝜋2: 𝑥𝑥 ⊓ 𝑦𝑦 ⊑ 𝑦𝑦
• For 𝑓𝑓: 𝑧𝑧 ⊑ 𝑥𝑥 and 𝑔𝑔: 𝑧𝑧 ⊑ 𝑦𝑦, ℎ: 𝑧𝑧 ⊑ 𝑥𝑥 ⊓ 𝑦𝑦

• 𝑥𝑥 + 𝑦𝑦 = 𝑥𝑥 ⊔ 𝑦𝑦
• 𝜄𝜄1: 𝑥𝑥 ⊑ 𝑥𝑥 ⊔ 𝑦𝑦
• 𝜄𝜄2:𝑦𝑦 ⊑ 𝑥𝑥 ⊔ 𝑦𝑦
• For 𝑓𝑓: 𝑥𝑥 ⊑ 𝑧𝑧 and 𝑔𝑔: 𝑦𝑦 ⊑ 𝑧𝑧, ℎ: 𝑥𝑥 ⊔ 𝑦𝑦 ⊑ 𝑧𝑧

𝑥𝑥 ⊓ 𝑦𝑦 𝑦𝑦𝑥𝑥

𝑧𝑧

⊑⊒

⊑

𝑥𝑥 ⊔ 𝑦𝑦 𝑦𝑦𝑥𝑥

𝑧𝑧

⊒⊑

⊑



Subcategory
• 𝑫𝑫 is a subcategory of category 𝑪𝑪 if the following conditions are 

hold:
• For any object 𝐴𝐴 ∈ 𝑫𝑫, 𝐴𝐴 ∈ 𝑪𝑪
• For any arrow 𝑓𝑓:𝐴𝐴 → 𝐵𝐵 ∈ 𝑫𝑫, 𝐴𝐴,𝐵𝐵 ∈ 𝑫𝑫
• For any object 𝐴𝐴 ∈ 𝑫𝑫, 1𝐴𝐴 ∈ 𝑫𝑫
• For any arrows 𝑓𝑓,𝑔𝑔 ∈ 𝑫𝑫, 𝑔𝑔 ∘ 𝑓𝑓 ∈ 𝑫𝑫
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• A subcategory 𝑫𝑫 is a category.
• Most of the diagrams we saw are subcategories.

𝑪𝑪
𝑫𝑫 𝐴𝐴

𝐵𝐵 𝐶𝐶
𝑓𝑓 𝑔𝑔

𝑔𝑔 ∘ 𝑓𝑓



Limit
• The limit of a subcategory 𝑫𝑫 of category 𝑪𝑪 is the object 𝑋𝑋

in C which satisfies the following conditions:
• For any object 𝐷𝐷𝑖𝑖 ∈ 𝑫𝑫, there exists an arrow 𝜈𝜈𝑖𝑖:𝑋𝑋 → 𝐷𝐷𝑖𝑖.
• For any arrow 𝑓𝑓:𝐷𝐷𝑖𝑖 → 𝐷𝐷𝑗𝑗 ∈ 𝑫𝑫, 𝑓𝑓 ∘ 𝜈𝜈𝑖𝑖 = 𝜈𝜈𝑗𝑗.
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• For any object 𝑌𝑌 in 𝑪𝑪 and arrows 𝜏𝜏𝑖𝑖:𝑌𝑌 → 𝐷𝐷𝑖𝑖 which satisfies for any 
arrow 𝑓𝑓:𝐷𝐷𝑖𝑖 → 𝐷𝐷𝑗𝑗 ∈ 𝑫𝑫 of 𝑓𝑓 ∘ 𝜏𝜏𝑖𝑖 = 𝜏𝜏𝑗𝑗, there exists a unique arrow 
𝜏𝜏:𝑌𝑌 → 𝑋𝑋 such that 𝜏𝜏𝑖𝑖 = 𝜈𝜈𝑖𝑖 ∘ 𝜏𝜏.

• The limit 𝑋𝑋 of 𝑫𝑫 is written as lim
←
𝑫𝑫.

𝑫𝑫

𝑋𝑋

𝐷𝐷𝑖𝑖 𝐷𝐷𝑗𝑗𝑓𝑓

𝜈𝜈𝑖𝑖
𝜈𝜈𝑗𝑗

𝑌𝑌
𝜏𝜏𝑖𝑖 𝜏𝜏𝑗𝑗

𝜏𝜏𝑪𝑪



Colimit
• The colimit of a subcategory 𝑫𝑫 of category 𝑪𝑪 is the object 
𝑋𝑋 in C which satisfies the following conditions:
• For any object 𝐷𝐷𝑖𝑖 ∈ 𝑫𝑫, there exists an arrow 𝜇𝜇𝑖𝑖:𝐷𝐷𝑖𝑖 → 𝑋𝑋.
• For any arrow 𝑓𝑓:𝐷𝐷𝑖𝑖 → 𝐷𝐷𝑗𝑗 ∈ 𝑫𝑫, 𝜇𝜇𝑗𝑗 ∘ 𝑓𝑓 = 𝜇𝜇𝑖𝑖.
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• For any object 𝑌𝑌 in 𝑪𝑪 and arrows 𝜎𝜎𝑖𝑖:𝐷𝐷𝑖𝑖 → 𝑌𝑌 which satisfies for any 
arrow 𝑓𝑓:𝐷𝐷𝑖𝑖 → 𝐷𝐷𝑗𝑗 ∈ 𝑫𝑫 of 𝜎𝜎𝑗𝑗 ∘ 𝑓𝑓 = 𝜏𝜏𝑖𝑖, , there exists a unique arrow 
𝜎𝜎:𝑋𝑋 → 𝑌𝑌 such that 𝜎𝜎𝑖𝑖 = 𝜎𝜎 ∘ 𝜇𝜇𝑖𝑖.

• The colimit 𝑋𝑋 of 𝑫𝑫 is written as lim
→
𝑫𝑫.

𝑫𝑫

𝑋𝑋

𝐷𝐷𝑖𝑖 𝐷𝐷𝑗𝑗𝑓𝑓

𝜇𝜇𝑖𝑖
𝜇𝜇𝑗𝑗

𝑌𝑌
𝜎𝜎𝑖𝑖 𝜎𝜎𝑗𝑗

𝜎𝜎
lim
→
𝑫𝑫

𝑪𝑪

lim
→
𝑫𝑫 and lim

←
𝑫𝑫 are dual

𝑫𝑫

lim
←
𝑫𝑫

𝐷𝐷𝑖𝑖 𝐷𝐷𝑗𝑗𝑓𝑓

𝜈𝜈𝑖𝑖
𝜈𝜈𝑗𝑗

𝑌𝑌
𝜏𝜏𝑖𝑖 𝜏𝜏𝑗𝑗

𝜏𝜏
𝑪𝑪



Inductive Limit and Projective Limit
• Inductive limit

• The colimit of the following diagram:

20

𝐷𝐷0 𝐷𝐷1 𝐷𝐷2 𝐷𝐷3 ⋯

lim
→
𝐷𝐷𝑖𝑖

• Projective limit
• The limit of the following diagram:

𝐷𝐷0 𝐷𝐷1 𝐷𝐷2 𝐷𝐷3 ⋯

lim
←
𝐷𝐷𝑖𝑖



Everything is Limit and Colimit
• product and co-product
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𝐴𝐴 × 𝐵𝐵𝐴𝐴 𝐵𝐵

𝐶𝐶

𝜋𝜋1 𝜋𝜋2

𝑓𝑓 𝑔𝑔
!ℎ

↻↺

𝐴𝐴 + 𝐵𝐵𝐴𝐴 𝐵𝐵

𝐶𝐶

𝜄𝜄1 𝜄𝜄2

𝑓𝑓 𝑔𝑔
!ℎ

↻ ↺

• final object and initial object

𝑫𝑫
𝐴𝐴 𝐵𝐵

limit colimit

𝐼𝐼 𝐴𝐴
!

𝐴𝐴 𝐹𝐹
! 𝑫𝑫

limit colimit

final object initial object



Other Limits and Colimits
• equalizer and co-equalizer
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𝐴𝐴 𝐵𝐵
𝑓𝑓

𝑔𝑔
𝐸𝐸

𝐷𝐷

𝑒𝑒

!

𝑓𝑓 ∘ 𝑒𝑒 = 𝑔𝑔 ∘ 𝑒𝑒

↺ 𝐴𝐴 𝐵𝐵
𝑓𝑓

𝑔𝑔
𝐶𝐶

𝐷𝐷

𝑐𝑐

!

𝑐𝑐 ∘ 𝑓𝑓 = 𝑐𝑐 ∘ 𝑔𝑔

↺

limit colimit

𝑫𝑫
𝐴𝐴 𝐵𝐵

𝑓𝑓

𝑔𝑔

equalizer co-equalizer

• pullback and pushout

𝐴𝐴

𝐵𝐵 𝐶𝐶 limit

𝐴𝐴

𝐵𝐵 𝐶𝐶

𝐷𝐷

𝑋𝑋
!

↺

↺
↺

colimit

𝐴𝐴

𝐵𝐵 𝐶𝐶

𝐴𝐴

𝐵𝐵 𝐶𝐶

𝐷𝐷

𝑋𝑋
!

↺

↺
↺

pullback pushout



Summary
• Category Theory

• Alternative foundation of Mathematics

• Category
• Objects and Arrows

• Special objects
• Initial and final objects
• Product and co-product

• Limit and Colimit
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Homework 11
• In CPO, we defined 𝐷𝐷1 + 𝐷𝐷2 as:

• 𝐷𝐷1 + 𝐷𝐷2 = 𝑥𝑥, 1 | 𝑥𝑥 ∈ 𝐷𝐷1 ∪ 𝑦𝑦, 2 | 𝑦𝑦 ∈ 𝐷𝐷2 ∪ ⊥D1+𝐷𝐷2
• 𝑥𝑥, 1 ⊑ 𝑥𝑥𝐼, 1 ⟺ 𝑥𝑥 ⊑ 𝑥𝑥𝐼
• 𝑦𝑦, 2 ⊑ 𝑦𝑦𝐼, 2 ⟺ 𝑦𝑦 ⊑ 𝑦𝑦𝐼
• ⊥D1+𝐷𝐷2⊑ 𝑥𝑥, 1
• ⊥D1+𝐷𝐷2⊑ 𝑦𝑦, 2
• 𝜄𝜄1 𝑥𝑥 = 𝑥𝑥, 1
• 𝜄𝜄2 𝑦𝑦 = 𝑦𝑦, 1

24

𝐷𝐷1 + 𝐷𝐷2𝐷𝐷1 𝐷𝐷2

𝐶𝐶

𝜄𝜄1 𝜄𝜄2

𝑓𝑓 𝑔𝑔
!ℎ

↻ ↺

• Show that it is not co-product in the sense of category theory.
• Hint: Create a counter example for 𝐵𝐵⊥ + 𝐵𝐵⊥ such that ℎ is not unique.
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