MATHEMATICS FOR INFORMATION SCIENCE NO.11 INTRODUCTION TO CATEGORY THEORY

Tatsuya Hagino hagino@sfc.keio.ac.jp

Slides URL

https://vu5.sfc.keio.ac.jp/slide/

Set Theory

- Set Theory
 - Foundation of Modern Mathematics
 - a set \equiv a collection of elements with some property
 - Ø
 - $A \cup B$
 - $A \cap B$
 - *A^c*
 - $\{x \in A \mid \text{logical formula about } x\}$
 - Description of elements is important: i.e. when $x \in A$
- Limit of set theory
 - Russell's Paradox
 - The collection of all sets is not a set.
 - $R = \{x \mid x \notin x\}$
 - $R \in R$ or $R \notin R$?

Category Theory

- Alternative foundation of Mathematics
- Some call it Abstract Nonsense.
- Describe things with relationship with others.

Set Theory	Category Theory
$x \in A$	$A \rightarrow B$
description of inside	description from outside
contents	actions

- Unify many concepts in one.
- Can see symmetry easily.

Category

- A category C consists of:
 - A collection of objects: *C* = {*A*, *B*, *C*, ... }
 - For objects A and B, a collection of arrows (or morphisms): hom_c(A, B) = {f, g, h, ... }
 - If $f \in \hom_{\mathcal{C}}(A, B)$, we may write it as: $f: A \to B$
 - A is the domain of f
 - B is the codomain (or range) of f

Category (cont)

• A category *C* mush satisfy the following properties:

• For
$$f: A \to B$$
 and $g: B \to C$,
 $g \circ f: A \to C$

• For
$$f: A \to B$$
, $g: B \to C$ and $f: C \to D$,
 $h \circ (g \circ f) = (h \circ g) \circ f$

Example of Category

- Set: the category of sets
 - objects: sets
 - arrows: functions
 - is the function composition
 - 1_A is the identity function of A
- Grp: the category of groups
 - objects: groups $(G, \cdot, e, ^{-1})$
 - arrows: homomorphisms
 - is the function composition
 - 1_A is the identity function of A
- CPO: the category of complete partial ordered sets
 - objects: CPO
 - arrows: continuous functions
 - • is the function composition.
 - 1_D is the identity function of D

$$(G, \cdot, e, \stackrel{-1}{}): \text{group}$$
• $x \cdot (y \cdot z) = (x \cdot y) \cdot z$
• $x \cdot e = e \cdot x = x$
• $x \cdot x^{-1} = x^{-1} \cdot x = e$
homomorphism: $f: G \to H$
• $f(x \cdot y) = f(x) \cdot f(y)$

Example of Category (cont.)

X

- Monoid (M, · , e) as a category
 - object: only one object
 - arrows: *M* (i.e. elements in *M*)
 - • is •
 - 1 is e
- Partially ordered set (D, ⊑) as a category
 - objects: *D* (i.e. elements in *D*)
 - arrows: \sqsubseteq (i.e. at most one arrow from $x \rightarrow y$)
 - • is ``if $x \sqsubseteq y$ and $y \sqsubseteq z$, then $x \sqsubseteq z$ "
 - 1_x is `` $x \sqsubseteq x$ "

 (M, \cdot, e) : monoid • $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ • $x \cdot e = e \cdot x = x$

- (D, \sqsubseteq) : partially ordered set
- *x*⊑*x*

y

- if $x \sqsubseteq y$ and $y \sqsubseteq z$, then $x \sqsubseteq z$
- if $x \sqsubseteq y$ and $y \sqsubseteq x$, then x = y

7

Dual Category

- Dual Category C^{op} of category C
 - C^{op} objects = C objects
 - C^{op} arrows: $\hom_{C^{op}}(A, B) = \hom_{C}(B, A)$
 - Reverse the direction of arrows.

 Any property which is true in category *C* is also true in its dual category *C*^{op}.

•
$$(\boldsymbol{C}^{op})^{op} = \boldsymbol{C}$$

Mono Morphism

One-to-one function

• A function $f: A \rightarrow B$ is one-to-one

 $\Leftrightarrow a = b \text{ if } f(a) = f(b)$

- Mono morphism
 - $f: A \rightarrow B$ is mono-morphism

 \Leftrightarrow for any object D and any arrows $g: D \to A$ and $h: D \to A$, if $f \circ g = f \circ h$, then g = h.

$$D \xrightarrow{h} A \xrightarrow{f} B$$

Epi Morphism

- Onto function
 - A function $f: A \rightarrow B$ is onto

 \Leftrightarrow for any $b \in B$, there exists $a \in B$ such that f(a) = b.

- Epi morphism
 - $f: A \rightarrow B$ is epi-morphism

 \Leftrightarrow for any object D and any arrows $g: B \to D$ and $h: B \to D$, if $g \circ f = h \circ f$, then g = h.

$$A \xrightarrow{f} B \xrightarrow{h} D$$

Mono and Epi

- Mono
 - $f: A \rightarrow B$ is mono-morphism

 \Leftrightarrow for any object D and any arrows $g: D \to A$ and $h: D \to A$, if $f \circ g = f \circ h$, then g = h.

$$D \xrightarrow{h} A \xrightarrow{f} B$$

Mono in C^{op} is epi in C.

Epi

• $f: A \rightarrow B$ is epi-morphism

 \Leftrightarrow for any object D and any arrows $g: B \to D$ and $h: B \to D$, if $g \circ f = h \circ f$, then g = h.

$$A \xrightarrow{f} B \xrightarrow{h} D$$

Epi in C^{op} is mono in C.

Isomorphic

- Isomorphic (iso)
 - Object *A* and *B* is are isomorphic

 \Leftrightarrow there are $f: A \to B$ and $g: B \to A$ such that $g \circ f = 1_A$ and $f \circ g = 1_B$.

$$A \xleftarrow{f} B$$

Isomorphic objects play the same role in *C*.

Initial and Final Objects

Initial object I

• for any object *A*, there is a unique arrow from *I* to *A*.

- Final object F
 - for any object A, there is a unique arrow from A to F.

$$A \xrightarrow{!} F$$

	Initial Object	Final Object
Set		
Grp		
СРО		
Partially Ordered Set		

Uniqueness of Initial Object

- Theorem: The initial object, if it exists, is unique up to isomorphic.
- **Proof:** Assume there are two initial objects I and I'.
 - Since I is an initial object, there is a unique arrow f from I to I'.
 - Since I' is an initial object, there is a unique arrow g from I' to I.
 - $g \circ f$ is an arrow from I to I.
 - Since *I* is an initial object, it should be the unique arrow 1_{*I*}. *g* ∘ *f* = 1_{*I*}

- Similarly, $f \circ g = 1_{I'}$.
- Therefore I and I' are isomorphic. QED
- Dual Theorem: The final object, if it exists, is unique up to isomorphic.

Product and Co-Product

- $A \times B$ is the product of Aand $B \Leftrightarrow$
 - There are two arrows $\pi_1: A \times B \to A$ and $\pi_2: A \times B \to B$.
 - For any object *C* and arrows $f: C \rightarrow A$ and $g: C \rightarrow B$,

there exists a unique arrow $h: C \rightarrow A \times B$ such that the following diagram commutes:

$$\pi_1 \circ h = f \qquad \pi_2 \circ h = g$$

- A + B is the co-product of A and $B \Leftrightarrow$
 - There are two arrows $\iota_1: A \to A + B$ and $\iota_2: B \to A + B$. :
 - For any object *C* and arrows $f: A \rightarrow C$ and $g: B \rightarrow C$,

there exists a unique arrow $h: A + B \rightarrow C$ such that the following diagram commutes:

 $h \circ \iota_1 = f$ $h \circ \iota_2 = g$

Product and Co-Product

	Product	Co-Product
Set	• $A \times B = \{(x, y) x \in A \text{ and } y \in B\}$ • $\pi_1((x, y)) = x$ • $\pi_2((x, y)) = y$ • For $f: C \rightarrow A$ and $g: C \rightarrow B$, h(z) = (f(z), g(z))	• $A + B = \{(x, 1) x \in A\} \cup \{(y, 2) y \in B\}$ • $\iota_1(x) = (x, 1)$ • $\iota_2(y) = (y, 2)$ • For $f: A \to C$ and $g: B \to C$, h((x, 1)) = f(x) and $h((y, 2)) = g(y)$
Partially Ordere d Set (D, \sqsubseteq)	• $x \times y = x \sqcap y$ • $\pi_1: x \sqcap y \sqsubseteq x$ • $\pi_2: x \sqcap y \sqsubseteq y$ • For $f: z \sqsubseteq x$ and $g: z \sqsubseteq y$, $h: z \sqsubseteq x \sqcap y$ $x \xleftarrow{=} x \sqcap y \xrightarrow{\sqsubseteq} y$ $\downarrow \sqcup \downarrow$ $\downarrow \downarrow$	• $x + y = x \sqcup y$ • $\iota_1: x \sqsubseteq x \sqcup y$ • $\iota_2: y \sqsubseteq x \sqcup y$ • For $f: x \sqsubseteq z$ and $g: y \sqsubseteq z, h: x \sqcup y \sqsubseteq z$ $x \stackrel{\sqsubseteq}{\longrightarrow} x \sqcup y \stackrel{\supseteq}{\longleftarrow} y$ $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$

• **Theorem:** If product $A \times B$ exists, it is unique up to isomorphic.

• **Dual Theorem:** If co-product A + B exists, it is unique up to isomorphic.

Subcategory

- D is a subcategory of category C if the following conditions are hold:
 - For any object $A \in D$, $A \in C$
 - For any arrow $f: A \rightarrow B \in \mathbf{D}$, $A, B \in \mathbf{D}$
 - For any object $A \in \mathbf{D}$, $1_A \in \mathbf{D}$
 - For any arrows $f, g \in \mathbf{D}, g \circ f \in \mathbf{D}$

- A subcategory **D** is a category.
- Most of the diagrams we saw are subcategories.

Limit

- The limit of a subcategory *D* of category *C* is the object *X* in *C* which satisfies the following conditions:
 - For any object $D_i \in \mathbf{D}$, there exists an arrow $v_i: X \to D_i$.
 - For any arrow $f: D_i \to D_j \in \mathbf{D}$, $f \circ v_i = v_j$.
 - For any object *Y* in *C* and arrows $\tau_i: Y \to D_i$ which satisfies for any arrow $f: D_i \to D_j \in D$ of $f \circ \tau_i = \tau_j$, there exists a unique arrow $\tau: Y \to X$ such that $\tau_i = \nu_i \circ \tau$.

• The limit *X* of *D* is written as lim *D*.

Colimit

- The colimit of a subcategory *D* of category *C* is the object *X* in *C* which satisfies the following conditions:
 - For any object $D_i \in \mathbf{D}$, there exists an arrow $\mu_i: D_i \to X$.
 - For any arrow $f: D_i \to D_j \in \mathbf{D}, \mu_j \circ f = \mu_i$.
 - For any object *Y* in *C* and arrows $\sigma_i: D_i \to Y$ which satisfies for any arrow $f: D_i \to D_j \in D$ of $\sigma_j \circ f = \tau_i$, there exists a unique arrow $\sigma: X \to Y$ such that $\sigma_i = \sigma \circ \mu_i$.

• The colimit *X* of *D* is written as lim *D*.

 $\lim_{\rightarrow} \boldsymbol{D} \text{ and } \lim_{\leftarrow} \boldsymbol{D} \text{ are dual}$

Inductive Limit and Projective Limit

Inductive limit

• The colimit of the following diagram:

Projective limit

• The limit of the following diagram:

Everything is Limit and Colimit

product and co-product

final object and initial object

Other Limits and Colimits

equalizer and co-equalizer

pullback and pushout

Summary

- Category Theory
 - Alternative foundation of Mathematics
- Category
 - Objects and Arrows
- Special objects
 - Initial and final objects
 - Product and co-product
- Limit and Colimit

Homework 11

• In CPO, we defined $D_1 + D_2$ as:

- $D_1 + D_2 = \{\langle x, 1 \rangle \mid x \in D_1\} \cup \{\langle y, 2 \rangle \mid y \in D_2\} \cup \{\bot_{D_1 + D_2}\}$ • $\langle x, 1 \rangle \sqsubseteq \langle x', 1 \rangle \Leftrightarrow x \sqsubseteq x'$ • $\langle y, 2 \rangle \sqsubseteq \langle y', 2 \rangle \Leftrightarrow y \sqsubseteq y'$ • $\perp_{D_1+D_2} \subseteq \langle x, 1 \rangle$ • $\perp_{D_1+D_2} \sqsubseteq \langle y, 2 \rangle$ • $\iota_1(x) = \langle x, 1 \rangle$ • $\iota_2(y) = \langle y, 1 \rangle$
- Show that it is not co-product in the sense of category theory.
 Hint: Create a counter example for B₁ + B₁ such that h is not unique.

24