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Set Theory

- Set Theory

- Foundation of Modern Mathematics

- a set = a collection of elements with some property
)
- AUB
cANB
o AC
- {x € A|logical formula about x}

- Description of elements is important: i.e. when x € A

- Limit of set theory
- Russell's Paradox
- The collection of all sets is not a set.
- R={x|x¢& x}
cREROrRE&R?
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Category Theory

- Alternative foundation of Mathematics
- Some call it Abstract Nonsense.
- Describe things with relationship with others.

Set Theory Category Theory
x€eA A-B
description of inside description from outside
contents actions

- Unify many concepts in one.
- Can see symmetry easily.
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Category

- A category C consists of:
- A collection of objects: € = {4,B,C, ...}

- For objects A and B, a collection of arrows (or morphisms):
homy(4,B) ={f,g,h,..}

- If f € hom¢(A4, B), we may write itas: f:A - B
- Ais the domain of f
+ B is the codomain (or range) of f
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Category (cont)

- A category € mush satisfy the following properties:

B
- Forf:A-Band g:B - C, l
o f- & g
gof:A-C o
C

f
- Forf:A—->B,g:B->Cand f:C - D, A——B
0 g)o )
ho(gof)=(hog)of o 1T 5
he(gef) o )
D <———C
h
- For each object 4, there exists an f

identity arrow 1,: 4 —» A and for f: 4 - B, A > B
fo]_A:fandlBofzf 1A/I\ o J/]_B
A B
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Example of Category

- Set. the category of sets
- objects: sets
- arrows: functions
- o Is the function composition

- 1, is the identity function of 4 (G, -,e, ~):group
s x-(yrz)=-y)z
- Grp: the category of groups * Xxre=e-x=x
e x-x1=x1.x=e¢
- objects: groups (G, - )

- arrows: homomorphlsms
- o Is the function composition
- 1, is the identity function of A

homomorphism: f: G - H

s fx-y)=fx)-fy)

- CPO: the category of complete partial ordered sets
- objects: CPO
- arrows: continuous functions
- o is the function composition.
- 1p is the identity function of D



Example of Category (cont.)

- Monoid (M,-,e) as a

Category (M, -,e): monoid
- object: only one object

| c x-rz2)=Kx-y)z
.ar;ows M (i.e. elementsin .:>y e ye—e-x=x
M

° oiS'
- lise

- Partially ordered set (D,E) as a

category y .

- objects: D (i.e. elements in D) r\ /

- arrows: C (i.e. at most one arrow W &
from x - y)

-ois ifxEyandyC z thenx C 2"
- 1,108 x Ex"

(D, ©): partially ordered set
 xCx

« if xCy and yCz, then xCz
« if xCy and yCx, then x=y
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Dual Category

- Dual Category C°P of category C
- C°P objects = C objects
- C°P arrows: homg¢or (4, B) = hom((B, A)
- Reverse the direction of arrows.

C cov
4 N 4 N
aLsp 9. 4l _pd ¢
VN AN
_ / N\ /

- Any property which is true in category C is also true in its
dual category C°P.
- (C°P)°P = C



Mono Morphism

- One-to-one function
- Afunction f: A — B is one-to-one

& a=bif f(a) = f(b)

A B

‘ rf (@)
Il

b *f (b)

- Mono morphism
- f:A = B is mono-morphism
< for any object D and any arrows g:D - Aand h:D - A,if fog = foh,then g = h.

h f

D ”—/=A——>8B
g



Epi Morphism

- Onto function

- Afunction f: A = B is onto
< for any b € B, there exists a € B such that f(a) = b.

A B
@ @
- Epi morphism

- f:A - B is epi-morphism
< for any object D and any arrows g:B - D and h:B - D,ifgef =ho f,then g = h.

A#B%ED

g



1
Mono and Epi

- Mono
- f:A = B is mono-morphism
& for any object D and any arrows g:D - Aand h:D - A, if fog = f oh, then g = h.

h .
D%A#B
g

Mono in C°P is epi in C.

- Epi
- f:A - B is epi-morphism
& for any object D and any arrows g:B = D and h:B = D,ifgef =ho f,then g = h.

h .
A#B%D

Y Epiin C°P is mono in C.
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Isomorphic

- Isomorphic (iso)
- Object A and B is are isomorphic
& thereare f:tA—->Band g:B - Asuchthatgef =14and fog = 15;.
f

A——>B

g

Isomorphic objects play the same role in C.
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Initial and Final Objects

- Initial object I

- for any object A4, there is a unique arrow from I to A.

|
e

- Final object F
- for any object A4, there is a unique arrow from A to F.

A e > F
Initial Object Final Object

Set

Grp

CPO

Partially Ordered Set




. | S
Uniqueness of Initial Object

- Theorem: The initial object, if it exists, is unique up to isomorphic.
- Proof: Assume there are two initial objects I and I'.
- Since I is an initial object, there is a unique arrow f from I to I'.

- Since I' is an initial object, there is a unique arrow g from I’ to I.
- go fisanarrow from [ to .

- Since I is an initial object, it should be the unique arrow 1;.
gef=1

~

~a -
- —
- -

- Similarly, f o g = 1,,.
- Therefore I and I' are isomorphic. QED

- Dual Theorem: The final object, if it exists, is unique up to isomorphic.



Product and Co-Product

- A X B is the product of A
and B &

- There are two arrows m;:A X B = A

andm,:AX B - B.

- For any object C and arrows f:C -
Aand g:C - B,

there exists a unique arrow h: C —
A X B such that the following

diagram commutes:

A%AXB%B

7'[10h=

f

C

N>

7T2°h=

g

- A + B is the co-product of

Aand B

- There are two arrows (;:A > A+ B
and ,:B > A+B.:

- For any object C and arrows f: A -
C and g:B - C,

there exists a unique arrow h: A +
B — C such that the following
diagram commutes:

l1 Ly
A— A+B <—— B

Q-hO

O <-1z

hoy =f hoiy =g
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Product and Co-Product

Product Co-Product
c AXB={(x,y)lxeAandyeB} |* A+B={(x,1)|x € A}U{(y,2)|y € B}
» i ((x, ) = x cu(0) = (1)
Set |* m((xy) =y c L) =,2)
« Forf:C > Aand g:C - B, * Forf:A—-Candg:B - C,
h(z) = (f(2),9(2)) h((x, 1)) = f(x) and h((¥,2)) = g(¥)
*xXy=xNy *x+ty=xUy
*mi:xNyEXx 1 xExUy

_ s myxMyEy s Ly xUYy
Partially | « Forf:zExandg:zEy, h:zExnNy |* ForfixEzandg:yEz, h:x Uy E z
Ordere

d Set x%xl‘ly-—>y x%xl_lye——y

NS RS

- Theorem: If product A X B exists, it is unique up to isomorphic.
- Dual Theorem: If co-product A + B exists, it is unique up to isomorphic.




Subcategory

- D is a subcategory of category C if the following conditions are
hold:

- Foranyobject Ae D,AeC

- Forany arrow f:A—-Be€D,A BED
- Forany object Ae D,1, €D

- Forany arrows f,ge D, gof €D

cl N

- A subcategory D is a category.
- Most of the diagrams we saw are subcategories.



Limit

- The limit of a subcategory D of category C is the object X
in Cwhich satisfies the following conditions:
- For any object D; € D, there exists an arrow v;: X — D;.
- Forany arrow f:D; » D; € D, f ov; = v;.

- For any object Y in € and arrows t;: Y — D; which satisfies for any
arrow f:D; - D; € D of f o 7; = 14, there exists a unique arrow

T:Y - X suchthatt; =v; o1.

/c N
T Y
X
p % '
/Z N
\ /

- The limit X of D is written as lim D.



Colimit

- The colimit of a subcategory D of category C is the object
X in Cwhich satisfies the following conditions:
- For any object D; € D, there exists an arrow u;: D; — X.
- Forany arrow f:D; » D; € D, ujo f = ;.

- For any object Y in € and arrows g;: D; — Y which satisfies for any
arrow f:D; » D; € D of gj o f = 15, , there exists a unique arrow

0:X = Y suchthatg; = g o y;.

lim D and lim D are dual

- The colimit X of D is written as lim D.
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Inductive Limit and Projective Limit

- Inductive limit
- The colimit of the following diagram:

D0—>D1—>D2—>D3—>...

E—
li_r)n D;

- Projective limit
- The limit of the following diagram:

D0<—D1<—D2<—D34—...

‘A\\



Everything is Limit and Colimit

- product and co-product

%AXB% A—> A+B <— B

SES S
.imfs[u }1'

- final object and initial object

A B

colimit

! limit ,
A e > F - 7 # [ s 4
final object initial object




Other Limits and Colimits

- equalizer and co-equalizer

equalizer co-equalizer
E—A i > c C
A D w R > d !
: foe= > v
D limit =cCo g D

colimit

- pullback and pushout

| =

B —— C |limit

pullback oushout
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Summary
- Category Theory

- Alternative foundation of Mathematics

- Category

- Objects and Arrows

- Special objects
- Initial and final objects
- Product and co-product

- Limit and Colimit



Homework 11

- In CPO, we defined D, + D, as:

D1+ D, ={{x,1) | x €D} U{{y,2) |y € D;} U {J-D1+D2}
c({x,1)E(x 1) xCx

- (V2)E(,2) =y Y

* lp,+p,E (x, 1)

* lp,+p,E (y,2)

© 11 (x) = (x, 1)

L) =1

% D1+D2 <__ DZ

N2

- Show that it is not co-product in the sense of category theory.
- Hint: Create a counter example for B, + B, such that h is not unique.
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