MATHEMATICS FOR INFORMATION SCIENCE
 NO. 11 INTRODUCTION TO CATEGORY THEORY

Tatsuya Hagino
hagino@sfc.keio.ac.jp

Slides URL
https://vu5.sfc.keio.ac.jp/slide/

Set Theory

- Set Theory
- Foundation of Modern Mathematics
- a set \equiv a collection of elements with some property
- \varnothing
- $A \cup B$
- $A \cap B$
- A^{C}
- $\{x \in A \mid$ logical formula about $x\}$
- Description of elements is important: i.e. when $x \in A$
- Limit of set theory
- Russell's Paradox
- The collection of all sets is not a set.
- $R=\{x \mid x \notin x\}$
- $R \in R$ or $R \notin R$?

Category Theory

- Alternative foundation of Mathematics
- Some call it Abstract Nonsense.
- Describe things with relationship with others.

Set Theory	Category Theory
$x \in A$	$A \rightarrow B$
description of inside	description from outside
contents	actions

- Unify many concepts in one.
- Can see symmetry easily.

Category

- A category C consists of:
- A collection of objects: $\boldsymbol{C}=\{A, B, C, \ldots\}$
- For objects A and B, a collection of arrows (or morphisms): $\operatorname{hom}_{C}(A, B)=\{f, g, h, \ldots\}$
- If $f \in \operatorname{hom}_{C}(A, B)$, we may write it as: $f: A \rightarrow B$
- A is the domain of f
- B is the codomain (or range) of f

Category (cont)

- A category \boldsymbol{C} mush satisfy the following properties:
- For $f: A \rightarrow B$ and $g: B \rightarrow C$,

$$
g \circ f: A \rightarrow C
$$

- For $f: A \rightarrow B, g: B \rightarrow C$ and $f: C \rightarrow D$,

$$
h \circ(g \circ f)=(h \circ g) \circ f
$$

- For each object A, there exists an identity arrow $1_{A}: A \rightarrow A$ and for $f: A \rightarrow B$,

$$
f \circ 1_{A}=f \text { and } 1_{B} \circ f=f
$$

Example of Category

- Set: the category of sets
- objects: sets
- arrows: functions
- o is the function composition
- 1_{A} is the identity function of A
- Grp: the category of groups
- objects: groups ($G, \cdot, e,^{-1}$)
- arrows: homomorphisms
- o is the function composition
- 1_{A} is the identity function of A
$\left(G, \cdot, e,^{-1}\right)$: group
- $x \cdot(y \cdot z)=(x \cdot y) \cdot z$
- $x \cdot e=e \cdot x=x$
- $x \cdot x^{-1}=x^{-1} \cdot x=e$
homomorphism: $f: G \rightarrow H$
- $f(x \cdot y)=f(x) \cdot f(y)$
- CPO: the category of complete partial ordered sets
- objects: CPO
- arrows: continuous functions
- o is the function composition.
- 1_{D} is the identity function of D

Example of Category (cont.)

- Monoid (M, \cdot, e) as a category
- object: only one object
- arrows: M (i.e. elements in M)
- o is.
- 1 is e
- Partially ordered set $(D, ㄷ)$ as a category
- objects: D (i.e. elements in D)
- arrows: \subseteq (i.e. at most one arrow from $x \rightarrow y$)
- 。 is " if $x \sqsubseteq y$ and $y \sqsubseteq z$, then $x \sqsubseteq z "$
- 1_{x} is " $x \sqsubseteq x$ "
(M, \cdot, e): monoid
- $x \cdot(y \cdot z)=(x \cdot y) \cdot z$
- $x \cdot e=e \cdot x=x$

($D, \check{\text { ᄃ }): ~ p a r t i a l l y ~ o r d e r e d ~ s e t ~}$
- $x \sqsubseteq x$
- if $x \sqsubseteq y$ and $y \sqsubseteq z$, then $x \sqsubseteq z$
- if $x \sqsubseteq y$ and $y \sqsubseteq x$, then $x=y$

Dual Category

- Dual Category $\boldsymbol{C}^{o p}$ of category \boldsymbol{C}
- $\boldsymbol{C}^{o p}$ objects = C objects
- $C^{o p}$ arrows: $\operatorname{hom}_{C^{o p}}(A, B)=\operatorname{hom}_{C}(B, A)$
- Reverse the direction of arrows.

- Any property which is true in category \boldsymbol{C} is also true in its dual category $C^{o p}$.
- $\left(\boldsymbol{C}^{o p}\right)^{o p}=\boldsymbol{C}$

Mono Morphism

- One-to-one function

- A function $f: A \rightarrow B$ is one-to-one

$$
\Leftrightarrow a=b \text { if } f(a)=f(b)
$$

- Mono morphism
- $f: A \rightarrow B$ is mono-morphism
\Leftrightarrow for any object D and any arrows $g: D \rightarrow A$ and $h: D \rightarrow A$, if $f \circ g=f \circ h$, then $g=h$.

$$
D \xrightarrow[g]{\xrightarrow{h}} A \xrightarrow{f} B
$$

Epi Morphism

- Onto function

- A function $f: A \rightarrow B$ is onto
\Leftrightarrow for any $b \in B$, there exists $a \in B$ such that $f(a)=b$.

- Epi morphism
- $f: A \rightarrow B$ is epi-morphism
\Leftrightarrow for any object D and any arrows $g: B \rightarrow D$ and $h: B \rightarrow D$, if $g \circ f=h \circ f$, then $g=h$.

$$
A \xrightarrow{f} B \xrightarrow[g]{\stackrel{h}{\longrightarrow}} D
$$

Mono and Epi

- Mono

- $f: A \rightarrow B$ is mono-morphism
\Leftrightarrow for any object D and any arrows $g: D \rightarrow A$ and $h: D \rightarrow A$, if $f \circ g=f \circ h$, then $g=h$.

$$
D \xrightarrow[g]{\stackrel{h}{\longrightarrow}} A \xrightarrow{f} B
$$

Mono in $\boldsymbol{C}^{o p}$ is epi in \boldsymbol{C}.

- Epi

- $f: A \rightarrow B$ is epi-morphism
\Leftrightarrow for any object D and any arrows $g: B \rightarrow D$ and $h: B \rightarrow D$, if $g \circ f=h \circ f$, then $g=h$.

$$
A \xrightarrow{f} B \xrightarrow[g]{\stackrel{h}{\longrightarrow}} D
$$

Isomorphic

- Isomorphic (iso)
- Object A and B is are isomorphic
\Leftrightarrow there are $f: A \rightarrow B$ and $g: B \rightarrow A$ such that $g \circ f=1_{A}$ and $f \circ g=1_{B}$.

$$
A \underset{g}{\stackrel{f}{\rightleftarrows}} B
$$

Isomorphic objects play the same role in \boldsymbol{C}.

Initial and Final Objects

- Initial object I
- for any object A, there is a unique arrow from I to A.

- Final object F
- for any object A, there is a unique arrow from A to F.

$$
A------>F
$$

	Initial Object	Final Object
Set		
Grp		
CPO		
Partially Ordered Set		

Uniqueness of Initial Object

- Theorem: The initial object, if it exists, is unique up to isomorphic.
- Proof: Assume there are two initial objects I and I^{\prime}.
- Since I is an initial object, there is a unique arrow f from I to I^{\prime}.
- Since I^{\prime} is an initial object, there is a unique arrow g from I^{\prime} to I.
- $g \circ f$ is an arrow from I to I.
- Since I is an initial object, it should be the unique arrow 1_{I}.
- $g \circ f=1_{I}$

1_{I}
- Similarly, $f \circ g=1_{I}$.
- Therefore I and I^{\prime} are isomorphic. QED
- Dual Theorem: The final object, if it exists, is unique up to isomorphic.

Product and Co-Product

- $A \times B$ is the product of A and $B \Leftrightarrow$
- There are two arrows $\pi_{1}: A \times B \rightarrow A$ and $\pi_{2}: A \times B \rightarrow B$.
- For any object C and arrows $f: C \rightarrow$ A and $g: C \rightarrow B$,
there exists a unique arrow $h: C \rightarrow$ $A \times B$ such that the following diagram commutes:

$$
\pi_{1} \circ h=f \quad \pi_{2} \circ h=g
$$

- $A+B$ is the co-product of A and $B \Leftrightarrow$
- There are two arrows $\iota_{1}: A \rightarrow A+B$ and $\iota_{2}: B \rightarrow A+B$:
- For any object C and arrows $f: A \rightarrow$ C and $g: B \rightarrow C$, there exists a unique arrow $h: A+$ $B \rightarrow C$ such that the following diagram commutes:

$$
h \circ \iota_{1}=f \quad h \circ \iota_{2}=g
$$

Product and Co-Product

	Product	Co-Product
Set	- $A \times B=\{(x, y) \mid x \in A$ and $y \in B\}$ - $\pi_{1}((x, y))=x$ - $\pi_{2}((x, y))=y$ - For $f: C \rightarrow A$ and $g: C \rightarrow B$, $h(z)=(f(z), g(z))$	- $A+B=\{(x, 1) \mid x \in A\} \cup\{(y, 2) \mid y \in B\}$ - $\iota_{1}(x)=(x, 1)$ - $\iota_{2}(y)=(y, 2)$ - For $f: A \rightarrow C$ and $g: B \rightarrow C$, $h((x, 1))=f(x)$ and $h((y, 2))=g(y)$
Partially Ordere d Set ($D, \underline{\text { ᄃ }}$)	- $x \times y=x \sqcap y$ - $\pi_{1}: x \sqcap y \sqsubseteq x$ - $\pi_{2}: x \sqcap y \sqsubseteq y$ - For $f: z \sqsubseteq x$ and $g: z \sqsubseteq y, h: z \sqsubseteq x \sqcap y$	- $x+y=x \sqcup y$ - $\iota_{1}: x \sqsubseteq x \sqcup y$ - $\iota_{2}: y \sqsubseteq x \sqcup y$ - For $f: x \sqsubseteq z$ and $g: y \sqsubseteq z, h: x \sqcup y \sqsubseteq z$

- Theorem: If product $A \times B$ exists, it is unique up to isomorphic.
- Dual Theorem: If co-product $A+B$ exists, it is unique up to isomorphic.

Subcategory

- \boldsymbol{D} is a subcategory of category \boldsymbol{C} if the following conditions are hold:
- For any object $A \in \boldsymbol{D}, A \in \boldsymbol{C}$
- For any arrow $f: A \rightarrow B \in \boldsymbol{D}, A, B \in \boldsymbol{D}$
- For any object $A \in \boldsymbol{D}, 1_{A} \in \boldsymbol{D}$
- For any arrows $f, g \in \boldsymbol{D}, g \circ f \in \boldsymbol{D}$

- A subcategory \boldsymbol{D} is a category.
- Most of the diagrams we saw are subcategories.

Limit

- The limit of a subcategory \boldsymbol{D} of category \boldsymbol{C} is the object X in C which satisfies the following conditions:
- For any object $D_{i} \in \boldsymbol{D}$, there exists an arrow $v_{i}: X \rightarrow D_{i}$.
- For any arrow $f: D_{i} \rightarrow D_{j} \in \boldsymbol{D}, f \circ v_{i}=v_{j}$.
- For any object Y in C and arrows $\tau_{i}: Y \rightarrow D_{i}$ which satisfies for any arrow $f: D_{i} \rightarrow D_{j} \in \boldsymbol{D}$ of $f \circ \tau_{i}=\tau_{j}$, there exists a unique arrow $\tau: Y \rightarrow X$ such that $\tau_{i}=v_{i} \circ \tau$.

- The limit X of \boldsymbol{D} is written as $\lim \boldsymbol{D}$.

Colimit

- The colimit of a subcategory \boldsymbol{D} of category \boldsymbol{C} is the object X in C which satisfies the following conditions:
- For any object $D_{i} \in \boldsymbol{D}$, there exists an arrow $\mu_{i}: D_{i} \rightarrow X$.
- For any arrow $f: D_{i} \rightarrow D_{j} \in \boldsymbol{D}, \mu_{j} \circ f=\mu_{i}$.
- For any object Y in C and arrows $\sigma_{i}: D_{i} \rightarrow Y$ which satisfies for any arrow $f: D_{i} \rightarrow D_{j} \in D$ of $\sigma_{j} \circ f=\tau_{i}$, , there exists a unique arrow $\sigma: X \rightarrow Y$ such that $\sigma_{i}=\sigma \circ \mu_{i}$.

- The colimit X of \boldsymbol{D} is written as $\lim \boldsymbol{D}$.

Inductive Limit and Projective Limit

- Inductive limit
- The colimit of the following diagram:

- Projective limit
- The limit of the following diagram:

Everything is Limit and Colimit

- product and co-product

- final object and initial object

Other Limits and Colimits

- equalizer and co-equalizer

- pullback and pushout

Summary

- Category Theory
- Alternative foundation of Mathematics
- Category
- Objects and Arrows
- Special objects
- Initial and final objects
- Product and co-product
- Limit and Colimit

Homework 11

- In CPO, we defined $D_{1}+D_{2}$ as:

```
- \(D_{1}+D_{2}=\left\{\langle x, 1\rangle \mid x \in D_{1}\right\} \cup\left\{\langle y, 2\rangle \mid y \in D_{2}\right\} \cup\left\{\perp_{D_{1}+D_{2}}\right\}\)
- \(\langle x, 1\rangle \sqsubseteq\left\langle x^{\prime}, 1\right\rangle \Leftrightarrow x \sqsubseteq x^{\prime}\)
- \(\langle y, 2\rangle \sqsubseteq\left\langle y^{\prime}, 2\right\rangle \Leftrightarrow y \sqsubseteq y^{\prime}\)
- \(\perp_{D_{1}+D_{2}} \subseteq\langle x, 1\rangle\)
- \(\perp_{D_{1}+D_{2}} \sqsubseteq\langle y, 2\rangle\)
- \(\iota_{1}(x)=\langle x, 1\rangle\)
- \(\iota_{2}(y)=\langle y, 1\rangle\)
```


- Show that it is not co-product in the sense of category theory.
- Hint: Create a counter example for $B_{\perp}+B_{\perp}$ such that h is not unique.

