MATHEMATICS FOR INFORMATION SCIENCE
NO.1 WHILE PROGRAM

Tatsuya Hagino
hagino@sfc.keio.ac.jp

Slides URL

https://vu5.sfc.keio.ac.jp/slide/

-z
Course Summary

- A program can be seen as a mathematical function which
calculates output value for a given input. In this lecture, we will
look into the property of functions which correspond to
programs.

- Firstly, in order to understand what we can calculate using programs,
we compare three models of programs: recursive functions, Turing
machines and lambda calculi. We will show that those three models
are equivalent.

- Secondly, we will study complete partial order sets which give
the model of lambda calculi and programs.

- Thirdly, in order to understand data types of programs, we will
look into category theory which is the abstraction of functions
and has an ability to reveal the beauty behind data types.

3
Course Schedule

1.While Program 8. Complete Partial
Ordered Set
2 Primitive Recursive 9. CPO and Data Type
Function 10. Continuous Function
3.Recursive Function 11. Denotational
Semantics”®
4. Turing Machine |
5. Turing Machine and 12. Introduction to
Computability Category Theory
13. Limits and Adjunctions
6.Lambda Calculus 14. Category Theory and
7.Lambda Calculus and Data Type*
Computability 15. Summary

*not in-class lecture

. S
What is Computation?

- Computation = what computers can calculate

- Focus only on computation for Natural Numbers.
- N={0,1,2,3,4,5,6,7,--}

- Computers can calculate four arithmetic operations (add, subtract,
multiply, divide) on natural numbers.

- For subtraction of a bigger number from a small number, the result is 0.

ceg.3—-5=0
- For division, the result is rounded down to natural numbers (no fraction).
ceg.5+-2=2

- What computers can do:
- Store the result of arithmetic operations into variables (Assignment Statement).

- Use values stored in variables in arithmetic operations.
- Process arithmetic and others one by one based on prescribed steps.

- Depending on values of variables, do different steps (Conditional Statement).

Computation and Algorithm

- Computation:
- Store several natural numbers in variables
- Process arithmetic and others based on prescribed steps.
- The result of computation is stored in a variable.
- Algorithm can be represented as a flow chart.

- Mathematically
- Computation = what computers can calculate
- Computers can be seen as functions.
- What kind of functions can computer calculate?

- Computability

- Algorithm = description of computation steps
- Algorithm can be represented as a flow chart.

5
Greatest Common Divisor

- Calculate the greatest common divisor of two natural numbers

- the biggest common divisor
- the biggest number which can divide both numbers

- for natural numbers m and n, let gcd(m, n) be the greatest common
divisor

- Example: the greatest common divisor of 315 and 231
- Divisors of 315

- Divisors of 213
- Common divisors of 315 and 231

- The greatest common divisor of 315 and 231

Euclidean Algorithm

- The oldest algorithm by Euclid
- Euclid: BC330 -- BC275
- Euclid's Elements

- Euclidean algorithm of caluculating the greatest common
divisor of two natural numbers n and m:

— 1. Calculate the remainder r of n divided by m.
‘m=gXm+r
- gcd(n, m) is equal to gcd(m, 1)

—— 2. Replace n,m by m,r, and do 1 again.
3. Repeat until n becomes divisible by m.

4. When the remainder is O, n is the answer.
« gcd(n,0) =n

Euclidean Algorithm Example

- Example: gcd(315,231)
- gcd(315,231)

Euclidean Algorithm

- 315+231=1--- 1. Calculate the remainder r of n
. . divided by m.

gcd(315,231) = ged(231,) . ged(n,m) = ged(m,)

231+~ =2... 2. Replace n,m by m,r

_ 3. Repeat until n becomes divisible

. 231 -

gcd(231,) =gcd(,) by m.

e +~ =1-- 4. When the remainderis 0
cged(,) =ged(,) toged(m0)=n
- ged(,)=gcd(,0)
- ged(,0) =

231 231 +

315 315 -

Flow Chart

- Assignment

where e is an expression of variables, natural numbers and
arithmetic operations.

- Conditional branch

o>

yes

V
where e; and e, are expressions of variables, natural numbers and
arithmetic operations.

. | N
Input and Output

- Input
input(xq,x,, -, x,)
. OUtpUt l

output(y)

- Flow chart program

- Start from input box, connect assignment and conditional boxes
and end with output box.

- Output box specifies the result of the function
ﬁNxNxmeaN

—

input output

| S
A Simple Flow Chart Program

input(x, y)

Z:=x+Yy

output(z)
f:NXN—>L1:/J f,y)=x+y

input output

. S
Flow Char of Calculating1 + 2+ -+ n

input(n) fi:N—>N
s:=0 f(n) = Zl
i=1

yes

Y

\ output(s)

N
Flow Chart for Euclidean Algorithm

Write a flow chart for
Euclidean algorithm.

input(n, m)

!

output(n)

. N
While Program

- Programming Language
- For computers, it is difficult to specify flow charts which are two
dimensional graphs.
- Want to express them as one dimensional language.

- While Programs
- input(xq, x5, ***, X,)
- output(y)
- x:=e
* {Py; Py; o5 P}
- if (e; = ey) then P else Q
- while (e; = e,) P

Example: While Program

- Calculating 1+ 2+ -4+ n

input (n) ;

s :=0;

i:=1;

while (i <= n) {
s :=s + 1i;
i:=1i+1

}
output(s) ;

input(n) ;

s :=0;

i:=1;

while (1 - (i - n)
s := s + 1i;
i=1+1

}

output (s) ;

1)

{

. N
Example of While Program

- Write a while program for Euclidean algorithm.

input(n,m) ;

output (n) ;

Flow Chart and While Program

- Theorem:
- Any while program can be expressed as a flow chart program.
- Any flow chart program can be expressed as a while program.

- Proof:

- It is obvious that any while program can be expressed as a flow
chart program.

- Inverse
- Put a number to each box (except input box) in the flow chart.
- Introduce a new variable to manage the box number.
- Use box numbers instead of arrows in the flow chart.
- Write a while program which manages the box number.

Example of conversion

input(x)

A4

no

yes

V

output(y)

input(x)

4D
N

N

Put a number
to each box

yes

Example of conversion

input(x)

no

yes

A

Qutput(y)

Introduce a new variable
Use box number
to connect

input(x)

yes

output(y)

es a=6 A
no

a:=2
a:=3 A
a:=5 7\
a:4‘ A
a=1 \
a:===6

Example of Conversion

- Write as a While Program

input (x) ;

a:=1;
while (a-5=0) {
if (a=1l) then { if (A) then a:=6 else a:=2 }
else if (a=2) then { B; a:=3 }
else if (a=3) then { if (C) then a:=5 else a:=4 }
else if (a=4) then { D; a:=1 }
else if (a=5) then { E; a:=6 }

output (y) ;

. SN
Corollary

- Corollary:

- Any while program can be converted into a program with one while
statement.

- Proof:
- Express a given while program to a flow chart program.
- Convert the flow chart program to a while program.

.z
Summary

- Computation = what computers can calculate

- Computable functions = mathematical functions which
computers can calculate

- Computability = whether mathematical functions are
computable or not

- Not all the mathematical functions on natural numbers are
computable.

- There are mathematical functions which cannot be calculated by
computers.

	Mathematics for Information Science �No.1　While Program
	Course Summary
	Course Schedule
	What is Computation?
	Computation and Algorithm
	Greatest Common Divisor
	Euclidean Algorithm
	Euclidean Algorithm Example
	Flow Chart
	Input and Output
	A Simple Flow Chart Program
	Flow Char of Calculating 1+2+…+𝑛
	Flow Chart for Euclidean Algorithm
	While Program
	Example: While Program
	Example of While Program
	Flow Chart and While Program
	Example of conversion
	Example of conversion
	Example of Conversion
	Corollary
	Summary

