
MATHEMATICS FOR INFORMATION SCIENCE 

NO.1 WHILE PROGRAM
Tatsuya Hagino
hagino@sfc.keio.ac.jp

1

https://vu5.sfc.keio.ac.jp/slide/
Slides URL



Course Summary
• A program can be seen as a mathematical function which 

calculates output value for a given input. In this lecture, we will 
look into the property of functions which correspond to 
programs.

2

• Firstly, in order to understand what we can calculate using programs, 
we compare three models of programs: recursive functions, Turing 
machines and lambda calculi. We will show that those three models 
are equivalent.

• Secondly, we will study complete partial order sets which give 
the model of lambda calculi and programs.

• Thirdly, in order to understand data types of programs, we will 
look into category theory which is the abstraction of functions 
and has an ability to reveal the beauty behind data types.



Course Schedule
1.While Program

2.Primitive Recursive 
Function

3.Recursive Function

4.Turing Machine
5.Turing Machine and 

Computability

6.Lambda Calculus
7.Lambda Calculus and 

Computability

8. Complete Partial 
Ordered Set

9. CPO and Data Type
10. Continuous Function
11. Denotational 

Semantics*

12. Introduction to 
Category Theory

13. Limits and Adjunctions
14. Category Theory and 

Data Type
15. Summary*

3

*not in-class lecture



What is Computation?
• Computation = what computers can calculate

4

• Focus only on computation for Natural Numbers.
• 𝑁𝑁 = {0, 1, 2, 3, 4, 5, 6, 7,⋯ }

• Computers can calculate four arithmetic operations (add, subtract,
multiply, divide) on natural numbers.

• What computers can do:

• For subtraction of a bigger number from a small number, the result is 0.
• e.g. 3 − 5 = 0

• For division, the result is rounded down to natural numbers (no fraction).
• e.g. 5 ÷ 2 = 2

• Store the result of arithmetic operations into variables (Assignment Statement).

• Use values stored in variables in arithmetic operations.
• Process arithmetic and others one by one based on prescribed steps.

• Depending on values of variables, do different steps (Conditional Statement).



Computation and Algorithm
• Computation:

• Store several natural numbers in variables
• Process arithmetic and others based on prescribed steps.
• The result of computation is stored in a variable.
• Algorithm can be represented as a flow chart.

5

• Mathematically
• Computation = what computers can calculate
• Computers can be seen as functions.
• What kind of functions can computer calculate?
• Computability

• Algorithm = description of computation steps
• Algorithm can be represented as a flow chart.



Greatest Common Divisor
• Calculate the greatest common divisor of two natural numbers

• the biggest common divisor
• the biggest number which can divide both numbers
• for natural numbers m and n, let gcd(𝑚𝑚,𝑛𝑛) be the greatest common 

divisor

6

• Example： the greatest common divisor of 315 and 231
• Divisors of 315

•
• Divisors of 213

•

• Common divisors of 315 and 231
•

• The greatest common divisor of 315 and 231
•



Euclidean Algorithm
• The oldest algorithm by Euclid

• Euclid: BC330 -- BC275
• Euclid's Elements

7

• Euclidean algorithm of caluculating the greatest common 
divisor of two natural numbers 𝑛𝑛 and 𝑚𝑚:
1. Calculate the remainder 𝑟𝑟 of 𝑛𝑛 divided by 𝑚𝑚.

2. Replace 𝑛𝑛,𝑚𝑚 by 𝑚𝑚, 𝑟𝑟, and do 1 again.

• 𝑛𝑛 = 𝑞𝑞 × 𝑚𝑚 + 𝑟𝑟
• gcd(𝑛𝑛,𝑚𝑚) is equal to gcd(𝑚𝑚, 𝑟𝑟)

3. Repeat until 𝑛𝑛 becomes divisible by 𝑚𝑚.
4. When the remainder is 0, 𝑛𝑛 is the answer.

• gcd(𝑛𝑛, 0) = 𝑛𝑛



Euclidean Algorithm Example

• Example: gcd(315,231)

8

231
315

=
231 ÷
315 ÷

=

• 231 ÷ = 2⋯
• gcd 231, = gcd ,

• gcd 315,231
• 315 ÷ 231 = 1⋯

• gcd 315,231 = gcd 231,

• ÷ = 1⋯
• gcd , = gcd ,

• ÷ = 3⋯0
• gcd , = gcd , 0

• gcd , 0 =

Euclidean Algorithm 

1. Calculate the remainder 𝑟𝑟 of 𝑛𝑛
divided by 𝑚𝑚.

• gcd 𝑛𝑛,𝑚𝑚 = gcd(𝑚𝑚, 𝑟𝑟)
2. Replace 𝑛𝑛,𝑚𝑚 by 𝑚𝑚, 𝑟𝑟
3. Repeat until 𝑛𝑛 becomes divisible 

by 𝑚𝑚.
4. When the remainder is 0 

• gcd(𝑛𝑛, 0) = 𝑛𝑛



Flow Chart
• Assignment

9

𝑥𝑥 ∶= 𝑒𝑒

where 𝑒𝑒 is an expression of variables, natural numbers and 
arithmetic operations.

• Conditional branch

where 𝑒𝑒1 and 𝑒𝑒2 are expressions of variables, natural numbers and 
arithmetic operations.

𝑒𝑒1 = 𝑒𝑒2

yes

no



Input and Output
• Input

10

input(𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛)

• Output

output(𝑦𝑦)

• Flow chart program
• Start from input box, connect assignment and conditional boxes 

and end with output box.
• Output box specifies the result of the function

input output

𝑓𝑓:𝑁𝑁 × 𝑁𝑁 × ⋯× 𝑁𝑁 → 𝑁𝑁



A Simple Flow Chart Program
11

input(𝑥𝑥,𝑦𝑦)

output(𝑧𝑧)

𝑧𝑧 ∶= 𝑥𝑥 + 𝑦𝑦

input output

𝑓𝑓:𝑁𝑁 × 𝑁𝑁 → 𝑁𝑁 𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥 + 𝑦𝑦



Flow Char of Calculating 1 + 2 +⋯+ 𝑛𝑛
12

input(𝑛𝑛)

output(𝑠𝑠)

𝑠𝑠 ∶= 0

𝑖𝑖 ∶= 1

𝑖𝑖 = 𝑛𝑛 + 1
yes

no

𝑠𝑠 ∶= 𝑠𝑠 + 𝑖𝑖

𝑖𝑖 ∶= 𝑖𝑖 + 1

𝑓𝑓:𝑁𝑁 → 𝑁𝑁

𝑓𝑓 𝑛𝑛 = �
𝑖𝑖=1

𝑛𝑛

𝑖𝑖



Flow Chart for Euclidean Algorithm
13

Write a flow chart for 
Euclidean algorithm.

input(𝑛𝑛,𝑚𝑚)

output(𝑛𝑛)



While Program
• Programming Language

• For computers, it is difficult to specify flow charts which are two 
dimensional graphs.

• Want to express them as one dimensional language.

14

• While Programs
• input(𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛)
• output(𝑦𝑦)
• 𝑥𝑥: = 𝑒𝑒
• {𝑃𝑃1;𝑃𝑃2; ⋯ ;𝑃𝑃𝑛𝑛}
• if (𝑒𝑒1 = 𝑒𝑒2) then 𝑃𝑃 else 𝑄𝑄
• while (𝑒𝑒1 = 𝑒𝑒2) 𝑃𝑃



Example: While Program
• Calculating 1 + 2 + ⋯+ 𝑛𝑛

15

input(n);
s := 0;
i := 1;
while (i <= n) {

s := s + i;
i := i + 1

}
output(s);

input(n);
s := 0;
i := 1;
while (1 - (i - n) = 1) {
s := s + i;
i := i + 1

}
output(s);



Example of While Program
• Write a while program for Euclidean algorithm.

16

input(n,m);

output(n);



Flow Chart and While Program
• Theorem:

• Any while program can be expressed as a flow chart program.
• Any flow chart program can be expressed as a while program.

17

• Proof:
• It is obvious that any while program can be expressed as a flow 

chart program.
• Inverse

• Put a number to each box (except input box) in the flow chart.
• Introduce a new variable to manage the box number.
• Use box numbers instead of arrows in the flow chart.
• Write a while program which manages the box number.



Example of conversion
18

input(𝑥𝑥)

𝐴𝐴

yes

no

𝐵𝐵

𝐶𝐶

𝐸𝐸

𝐷𝐷

output(𝑦𝑦)

yes

no

input(𝑥𝑥)

𝐴𝐴

yes

no

𝐵𝐵

𝐶𝐶

𝐸𝐸

𝐷𝐷

output(𝑦𝑦)

yes

no

Put a number
to each box

1

2

3

4

5

6



Example of conversion
19

Introduce a new variable
Use box number

to connectinput(𝑥𝑥)

𝐴𝐴

yes

no

𝐵𝐵

𝐶𝐶

𝐸𝐸

𝐷𝐷

output(𝑦𝑦)

yes

no

1

2

3

4

5

6

input(𝑥𝑥)

𝑎𝑎 ≔ 1

output(𝑦𝑦)

𝐴𝐴 yes

no

1𝑎𝑎 = 1 𝑎𝑎 ≔ 6

𝑎𝑎 ≔ 2

yes

no

𝐵𝐵2𝑎𝑎 = 2 𝑎𝑎 ≔ 3
yes

no

𝐷𝐷4𝑎𝑎 = 4 𝑎𝑎 ≔ 1
yes

no

𝐸𝐸5𝑎𝑎 = 5 𝑎𝑎 ≔ 6
yes

no

𝑎𝑎 = 3 𝐶𝐶 yes

no

3 𝑎𝑎 ≔ 5

𝑎𝑎 ≔ 4

yes

no



Example of Conversion
• Write as a While Program

20

input(x);

output(y);

a:=1;
while (a-5=0) {

if (a=1) then { if (A) then a:=6 else a:=2 }
else if (a=2) then { B; a:=3 }
else if (a=3) then { if (C) then a:=5 else a:=4 }
else if (a=4) then { D; a:=1 }
else if (a=5) then { E; a:=6 }

}



Corollary
• Corollary:

• Any while program can be converted into a program with one while 
statement.

21

• Proof:
• Express a given while program to a flow chart program.
• Convert the flow chart program to a while program.



Summary
• Computation = what computers can calculate

• Computable functions = mathematical functions which 
computers can calculate

• Computability = whether mathematical functions are 
computable or not
• Not all the mathematical functions on natural numbers are 

computable.
• There are mathematical functions which cannot be calculated by 

computers.

22


	Mathematics for Information Science �No.1　While Program
	Course Summary
	Course Schedule
	What is Computation?
	Computation and Algorithm
	Greatest Common Divisor
	Euclidean Algorithm
	Euclidean Algorithm Example
	Flow Chart
	Input and Output
	A Simple Flow Chart Program
	Flow Char of Calculating 1+2+…+𝑛
	Flow Chart for Euclidean Algorithm
	While Program
	Example: While Program
	Example of While Program
	Flow Chart and While Program
	Example of conversion
	Example of conversion
	Example of Conversion
	Corollary
	Summary

