MATHEMATICS FOR INFORMATION SCIENCE NO.3 RECURSIVE FUNCTION

Tatsuya Hagino hagino@sfc.keio.ac.jp

Slides URL

https://vu5.sfc.keio.ac.jp/slide/

So far

- Computability
 - · While program and flow chart are equivalent.
- Primitive recursive function
 - $zero: N^0 \to N$ zero() = 0• $suc: N \to N$ suc(x) = x + 1• $\pi_i^n: N^n \to N$ $\pi_i^n(x_1, ..., x_n) = x_i$
 - primitive recursion
 - $f(x_1, ..., x_n, zero()) = g(x_1, ..., x_n)$ • $f(x_1, ..., x_n, suc(y)) = h(x_1, ..., x_n, y, f(x_1, ..., x_n, y))$
 - composition of primitive recursive functions
 - $f(x_1, \dots, x_n) = g(h_1(x_1, \dots, x_n), \dots, h_m(x_1, \dots, x_n))$
- Example of primitive recursive functions:
 - one, pred, add, sub, mul, div, ...

Compute Primitive Recursive Functions

• Theorem:

Primitive recursive functions are computable.

Proof:

• $zero, suc, \pi_i^n$ are computable.

Compute Primitive Recursive Functions

A composition of primitive recursive functions are computable.

$$f(x_1, x_2, ..., x_n) = g(h_1(x_1, x_2, ..., x_n), ..., h_m(x_1, x_2, ..., x_n))$$

Compute Primitive Recursive Functions

A function defined by a primitive recursion is computable.

- $f(x_1, \dots, x_n, zero()) = g(x_1, \dots, x_n)$
- $f(x_1, ..., x_n, suc(y)) = h(x_1, ..., x_n, y, f(x_1, ..., x_n, y))$

Is computable function always primitive recursive?

- Primitive recursive functions are total.
 - total = for any input, there is output.
- Computable functions may not be total, but partial.
 - partial = for some input, there is no output.
- The set of computable functions is larger than that of primitive recursive functions.
- There is a total function which is not primitive recursive:
 - Ackerman function $A: N^2 \to N$
 - A(0, y) = suc(y)
 - A(suc(x), 0) = A(x, suc(0))
 - A(suc(x), suc(y)) = A(x, A(suc(x), y))

Minimization Operator

- Definition:
 - For predicate $p: N^{n+1} \to \{\text{True}, \text{False}\}$

$$f(x_1, ..., x_n) = \min(\{y \mid p(x_1, ..., x_n, y) \text{ is True}\})$$

- $f(x_1, ..., x_n)$ gives the smallest y which makes $p(x_1, ..., x_n, y)$ true.
 - $f(x_1, ..., x_n)$ is called minimization function of $p(x_1, ..., x_n, y)$ and is written as: $\mu_{\mathcal{V}}(p(x_1, ..., x_n, y))$
 - μ is know as minimization operator.
- Example:

•
$$f(x) = \mu_y(x = y \times 2)$$
 $f(2) = 1$ $f(3) = \bot$
• $g(x) = \mu_y(x = y^2)$ $g(4) = 2$ $g(5) = \bot$

Recursive Function

- Recursive Functions:
 - Primitive recursive functions
 - Minimization functions for primitive recursive predicates
 - Composition of recursive functions
 - Functions defined by primitive recursion with recursive functions

- In short, recursive function is:
 - primitive recursive function + minimization operator

Recursive ⇒ Computable

- Theorem: Recursive functions are computable.
- Proof:
 - Only need to show about the minimization operator.

$$f(x_1, \dots, x_n) = \mu_y \big(p(x_1, \dots, x_n, y) \big)$$

Gödel Function

- Gödel function $G: N^n \to N$ and its inverse functions $G_1: N \to N, ..., G_n: N \to N$ must satisfy:
 - G is a one-to-one function,
 - $G_i(G(x_1,...,x_n)) = x_i$, and
 - G, G_1 , ..., G_n are primitive recursive.
- $G(x_1, ..., x_n)$ is called Gödel number of $x_1, ..., x_n$.
- Example:
 - $G(x_1, x_2, ..., x_n) = 2^{x_1} \times 3^{x_2} \times ... \times p_n^{x_n}$ (where p_n is the nth prime number)
 - $G_1(x) = x \mu_{y < x} (\text{divisible}(x, 2^{x-y}))$
 - $G_2(x) = x \mu_{y < x} (\text{divisible}(x, 3^{x-y}))$

• $G_n(x) = x - \mu_{y < x} \left(\text{divisible}(x, p_n^{x-y}) \right)$

Computable ⇒ Recursive

Theorem: Computable functions are recursive.

Proof:

Any while program can be converted into the following format:

```
\begin{aligned} & \text{input}(x_1, \dots, x_n); \\ & a \coloneqq 1; \\ & \text{while } (a-k=0) \ \{ \\ & \text{if } (a=1) \ P_1; \\ & \text{else if } (a=2) \ P_2; \\ & \text{else if } (a=3) \ P_3; \\ & \vdots \\ & \text{else if } (a=k) \ P_k; \\ \} \\ & \text{output}(y) \end{aligned}
```

where P_i is either an assignment or a conditional statement.

Proof (cont.)

- Let a_1, \dots, a_n be all the variables in the program.
 - Let a_1 be the box number variable a.
 - Use $b = G(a_1, ..., a_n)$ instead of individual variables.
- If P_i is an assignment statement: $a_m := f(a_1, ..., a_n)$; a := l
 - $b \coloneqq G\left(l, G_2(b), \dots, f\left(G_1(b), \dots, G_n(b)\right), \dots, G_n(b)\right)$
- If P_i is a conditional statement: if $(p(a_1, ..., a_n))$ a := l else a := m

•
$$b := G\left(C_p(G_1(b), ..., G_n(b)) \times l + (1 - C_p(G_1(b), ..., G_n(b))) \times m, G_2(b), ..., G_n(b)\right)$$

- P_i can be expressed as a simple assignment statement
 - $b \coloneqq f_i(b)$
 - where f_i is a primitive recursive function.
- Combining section of P_i depending on a can also be expressed as a single assignment statement:
 - $b := \sum_{i=1}^k C_{=}(G_1(b), i) \times f_i(b)$

Proof (cont.)

The program can be converted into the following:

Proof (cont.)

- Let $f^{\sharp}(b,n) = f\left(f\left(f\left(\cdots f(b)\right)\right)\right)$
 - Apply f to b n times.
 - Can be defined by primitive recursion:
 - $f^{\sharp}(b,0) = b$
 - $f^{\sharp}(b,suc(n)) = f\left(f^{\sharp}(b,n)\right)$
- The loop can be expressed using minimization operator.

•
$$h(b) = f^{\sharp} \left(b, \mu_n \left(G_1 \left(f^{\sharp} (b, n) \right) > k \right) \right)$$

- Therefore, the program calculates the following function:
 - $G_m(h(G(1,x_1,...,x_n,0,...,0)))$
- This is a recursive function. (QED)

Lemma

Any recursive function can be expressed as

$$f\left(x_1,\ldots,x_n,\mu_y(p(x_1,\ldots,x_n,y))\right)$$

where f is a primitive recursive function and p is a primitive recursive predicate.

- only one μ is necessary
- others are primitive recursive

Summary

- Primitive recursive functions:
 - Summation and Product
 - Primitive recursive predicate
 - division is primitive recursive
 - nth prime number is primitive recursive
- Recursive functions:
 - Primitive recursive functions
 - Minimization operator
- Any recursive function is computable.
- Any computable function is recursive.

Mathematical Induction

- In order to show P(x) holds for any natural number x, show the following two things:
 - (base) It holds for x = 0
 - (induction) Assuming it holds for x = n, it also holds x = suc(n)
- This is called mathematical induction.
 - P(x) holds for natural number x by mathematical induction.

$$\frac{P(0) \quad P(n) \supset P(suc(n))}{\forall x \in N \ P(x)}$$

Show add(0, x) = x

Lemma: add(0,x) = x

Definition of *add*

- add(x,0) = x• add(x,suc(y)) = suc(add(x,y))

Proof:

(base) If x = 0, from the definition add(0,0) = 0. Therefore, it holds.

(induction) Assume it holds for x = n. Then add(0, n) = n. If x = suc(n), lhs = add(0, suc(n))= suc(add(0,n)) (: definition of add) = suc(n)(∵ assumtion) = rhs

Therefore add(0,x) = x holds for any natural number x.

Homework: Prove add(x, y) = add(y, x)

Theorem: add(x, y) = add(y, x)

 Before proving this theorem, you may need to prove the following lemma.

Lemma: add(suc(x), y) = suc(add(x, y))

- This lemma can be proved by mathematical induction on y.
- Then, you can prove the theorem by mathematical induction on x.