MATHEMATICS FOR INFORMATION SCIENCE
NO.3 RECURSIVE FUNCTION

Tatsuya Hagino
hagino@sfc.keio.ac.jp

Slides URL

https://vu5.sfc.kelo.ac.jp/slide/

So far

- Computability
- While program and flow chart are equivalent.

- Primitive recursive function
- zero: NY > N zero() = 0
csuc: N> N suc(x) = x + 1
- N" > N T (X1, oy Xp) = X;
- primitive recursion
© f(xq, o, xp, zero () = g(xq, e, Xp)
¢ (a2, SUCR)) = hCXL, o X Y G e X Y))
- composition of primitive recursive functions
‘ f(xlu ---»xn) = g(hl(xln ---rxn)r T hm(xln ---»xn))

- Example of primitive recursive functions:
- one, pred, add, sub, mul, div, ...

Compute Primitive Recursive Functions

- Theorem:
- Primitive recursive functions are computable.

- Proof:
- zero, suc, ;' are computable.

zZero suc anl

input() input(x) input(xy, x5, -+, x,)

\\4
output(z) output(x) output(x;)

Compute Primitive Recursive Functions

- A composition of primitive recursive functions are computable.

f oy, %3, 00, %) = g(hy (1, X5, ey X)) woe s A (X1, X3, 000, X))

input(xq, x5, ***, xX)

vy = hy (X1, X5, o) X))

Y

V2 = hZ(xll X2, ---;xn)

I
I
:
I
\V2

Ym = hm (X1, %2, .., Xp)

z:= g1, Ym)

output(z)

5

Compute Primitive Recursive Functions

- A function defined by a primitive recursion is computable.

© f(xq, ., xn,zero()) = g(x1, .o, Xp)

. f(xl, ey Xy Suc(y)) = h(xy, e, X, V, [(X1, oo, X0, ¥))

input(xq, x,,*+, Xp, V)

yes

f=h(xy, .., xp2f) output(f)

N

Is computable function always primitive recursive?

- Primitive recursive functions are total.
- total = for any input, there is output.

- Computable functions may not be total,
but partial.
- partial = for some input, there is no output.

- The set of computable functions is larger
than that of primitive recursive functions.

- There iIs a total function which is not
primitive recursive:

- Ackerman function A:N? - N

-+ A(0,y) = suc(y)
« A(suc(x),0) = A(x, suc(0))

- A(suc(x),suc(y)) = A(x,A(suc(x),y))

input(x)

yes

V

output(z)

z=z+1

Minimization Operator

.« Definition:
- For predicate p: N**1 - {True, False}

f(xq, e, xp) = min({y | p(xq, ..., x5, ¥) is True})

- f(xq, ..., x,) gives the smallest y which makes p(x4, ..., x,,, ¥) true.

« f(xq, ..., xy) is called minimization function of p(x4, ..., x,,, ¥) and is written as:
wy (P, s X0,)

- u is know as minimization operator.

- Example:
- f(x) = py(x =y x2) f2)=1 fB) =1
- g(x) = py (x = y?) g(4) = 2 g(5) =1

B
Recursive Function

. - Recursive Functions: §
' - Primitive recursive functions
.+ Minimization functions for primitive recursive predicates
- Composition of recursive functions
- Functions defined by primitive recursion with recursive functions

- In short, recursive function is:
- primitive recursive function + minimization operator

. °
Recurswe = Computable

- Proof:
- Only need to show about the minimization operator.

fQxy, s xn) = sy (p(x1, o) X0,)

input(xq, x5, **+, xp)

no

yes \

output(y)

y=y+1

Godel Function

.« Godel function G: N™ - N and its inverse functions
. Gi:N > N, ...,G,: N - N must satisfy:

- G IS a one-to-one function,

e Gi(G(xl, ...,xn)) = x;, and

- G(x4, ..., x,) is called Godel number of x4, ..., x,,.

- Example:
© G(Xq, Xp, ey Xp) = 2%1 X 3%2 X -o- X ;™ (Where p, is the nth prime number)

+ Gy (%) = x — tyex(divisible(x, 277))
. GZ (x) =X — 'uy<x(diViSible(x, 3x_y))

© Gp(X) = X — Uyey (divisible(x, py))

Computable = Recursive

—]
=
g
®)
-
@D
=
'®
)
3
©
-
—
QO
=]
)
—
-
-
O
.
@)
-
n
QD
-
)
-
g
O
-
-
N
<
@

- Proof:
- Any while program can be converted into the following format:

input(xy, ..., xX,);

a:=1;
while (a — k = 0) {
if (a=1) P;;

else if (a = 2) Py;
else if (a = 3) Ps;

el.se if (a = k) Py;
}
output(y)

where P; is either an assignment or a conditional statement.

Proof (cont.)

- Let a4, ..., a, be all the variables in the program.
- Let a; be the box number variable a.
- Use b = G(a4, ..., a,) instead of individual variables.

- If P; is an assignment statement: a,,, == f(aq, ..., a,);a =1
© b= G (1,63 (B), ., f(G1(B), .., G (D)), .., G (D))

- If P; is a conditional statement: if (p(a4, ...,a,)) a:=1else a :=m
- bh=G (Cp(Gl(b), e G (D)) X L+ (1= Cy(G1(B), .., G (D))) X, G (b), ...,Gn(b))

- P; can be expressed as a simple assignment statement
* b= fi(b)

- where f; is a primitive recursive function.

- Combining section of P; depending on a can also be expressed as a
single assignment statement:

- b=YF C_(G,(b),i) X fi(b)

Proof (cont.)

- The program can be converted into the following:

input(xq, x5, -, x)

y

b:=G(1,xq,..,%,,0,..,0)

yes

y = G (b)

b= f(b)

output(y)

Proof (cont.)
Letf ¥ m = £(f (F(- £ 1))

- Apply f to b n times.
- Can be defined by primitive recursion:

- ¥ b0 =b
< ¥ B suce) = £ (F ¥ om)

- The loop can be expressed using minimization operator.
h) = ¥ (b, i (G (¥ 0,m) > k))

- Therefore, the program calculates the following function:
(h(G(1 X1, . 0)))

- This is a recursive function. (QED)

. Any recursive function can be expressed as

f (xl, s X, ,uy(p(xl, s X, y)))

. where f is a primitive recursive function and p is a primitive
recursive predicate.

- only one u is necessary
- others are primitive recursive

Summary

- Primitive recursive functions:
- Summation and Product
- Primitive recursive predicate
- division is primitive recursive
- nth prime number is primitive recursive I I

while program

flow chart

- Recursive functions:
- Primitive recursive functions I I
- Minimization operator

recursive
- Any recursive function is computable. T

- Any computable function is recursive.

Mathematical Induction

.- In order to show P(x) holds for any natural number x,
show the following two things:
- (base) It holds for x = 0
- (induction) Assuming it holds for x = n, it also holds x = suc(n)

- This is called mathematical induction.
- P(x) holds for natural number x by mathematical induction.

P(0) P(n) o P(suc(n))
Vx € N P(x)

Show add(0,x) = x

e EnhEEEEEL R Definition of add

. Lemma: add(0,x) = x * add(x,0) = x
b e e o e * add(x, suc(y)) = suc(add(x,y))

- Proof:
(base) If x = 0, from the definition add(0,0) = 0. Therefore, it holds.

(induction) Assume it holds for x = n. Then add(0,n) =n..
If x = suc(n),
lhs = add (0, suc(n))

suc(add(0,n)) (- definition of add)

= suc(n) (- assumtion)
= rhs

Therefore add (0, x) = x holds for any natural number x.

Homework: Prove add(x,y) = add(y, x)

- Before proving this theorem, you may need to prove the
following lemma.

- This lemma can be proved by mathematical induction on vy.

- Then, you can prove the theorem by mathematical induction on
X.

