MATHEMATICS FOR INFORMATION SCIENCE NO.4 TURING MACHINE Tatsuya Hagino hagino@sfc.keio.ac.jp Slides URL https://vu5.sfc.keio.ac.jp/slide/ ### So far - Computation - flow chart program - while program - recursive function - primitive recursive function - minimization operator ### Finite State Automata - A Finite State Automaton $M = (Q, \Sigma, \delta, q_0, F)$ - Q: a finite, non-empty set of states - Σ: the input alphabet (a finite, non-empty set of symbols) - δ : a state-transition function, $\delta: Q \times \Sigma \to Q$ - q₀: an initial state, an element in Q - F: a set of final states, a (possibly empty) subset of Q ### FA Example (1) An automaton which checks whether '1' appears even number of times in a string of '0' and '1'. $$M_1 = (\{q_0, q_1\}, \{0,1\}, \delta_1, q_0, \{q_0\})$$ • Define δ_1 as follows: $$\delta_1$$: $\{q_0, q_1\} \times \{0, 1\} \rightarrow \{q_0, q_1\}$ $$\begin{cases} \delta_{1}(q_{0}, 0) = q_{0} \\ \delta_{1}(q_{0}, 1) = q_{1} \\ \delta_{1}(q_{1}, 0) = q_{1} \\ \delta_{1}(q_{1}, 1) = q_{0} \end{cases}$$ | δ_1 | 0 | 1 | |------------|-------|-------| | q_0 | q_0 | q_1 | | q_1 | q_1 | q_0 | ### **State Transition** - Input "0101" to *M*₁ - 0. The initial state is q_0 - 1. Input 0 moves to $\delta_1(q_0, 0) = q_0$ - 2. Input 1 moves to $\delta_1(q_0, 1) = q_1$ - 3. Input 0 moves to $\delta_1(q_1, 0) = q_1$ - 4. Input 1 moves to $\delta_1(q_1, 1) = q_0$ - The automaton M_1 accepts `0101' because $q_0 \in F$. ### State Transition in General - Change state according to input symbols in Σ - 0. The initial state is always q_0 - 1. After receiving the first symbol a_1 , the state changes to $\delta(q_0, a_1) = q_1$ - 2. After receiving the second symbol a_2 , the state changes to $\delta(q_1, a_2) = q_2$ - 3. After receiving the third symbol a_3 , the state changes to $\delta(q_2, a_3) = q_3$ - i. After receiving the i th symbol a_i , the state changes to $\delta(q_{i-1}, a_i) = q_i$ - n. After receiving the n th symbol a_n , the state changes to $\delta(q_{n-1}, a_n) = q_n$ - M accepts $a_1 a_2 \cdots a_n$ when $q_n \in F$ $$q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \xrightarrow{a_3} q_3 \xrightarrow{a_i} q_i \xrightarrow{a_n} q_n \in F$$ ### Accepted Language - Extend δ to a sequence of symbols: - $\delta(q, a_1 a_2 a_3 \cdots a_n) = \delta(\cdots \delta(\delta(\delta(q, a_1), a_2), a_3) \cdots, a_n)$ - $\delta(q, \epsilon) = q$ where ϵ represents the empty sequence. - M accepts $a_1 a_2 \cdots a_n$ when - $\delta(q_0, a_1 a_2 \cdots a_n) \in F$ - The language which $M = (Q, \Sigma, \delta, q_0, F)$ accepts can be defined as follows: - $L(M) = \{x \in \Sigma^* \mid \delta(q_0, x) \in F\}$ ### FA Example (2) - Write the state diagram of the following machine. - $M_2 = (\{q_0, q_1, q_2\}, \{0,1\}, \delta_2, q_0, \{q_2\})$ | δ_2 | 0 | 1 | |------------|-------|-------| | q_0 | q_0 | q_1 | | q_1 | q_0 | q_2 | | q_2 | q_2 | q_2 | - What is the language $L(M_2)$ which M_2 accepts? - Accept when input # **Turing Machine** - Alan Turing - British Mathematician (1912/6/23~1954/6/7) - "On Computable Numbers, with an Application to the Entscheidungsproblem", 1936/5/28 - Entscheidungsproblem = decision problem - The Entscheidungsproblem = "ask for an algorithm that takes as input a statement of a first-order logic and answers "Yes" or "No" according to whether the statement is valid" by David Hilbert in 1928. - Turing Machine - an infinite length tape - a head which can read data on the tape and moves left and right ### Tape and Head #### Tape - One tape width infinite length for left and right - The tape is divided into cells. - Each cell holds a symbol (an alphabet or a blank symbol). #### Head - One head - The head is on top of one cell. - The head can read and write the symbol in the cell. - The head can move left or right one cell at a time. - The head has a state. - The next state is determined by the current state and the symbol in the cell. ### **Formal Definition** - A Turing machine M consists of the following three things: - A finite set of tape symbols $A = \{a_0, a_1, \dots, a_{m-1}\}$ - Let a_0 be the special symbol '_' for blank. - A finite set of states $Q = \{q_0, q_1, \dots, q_{l-1}\}$ - q_1 is the initial state and q_0 is the final state. - A transition function $T: Q \times A \rightarrow Q \times A \times \{L, R, N\}$ - Let q be the current state, and a be the tape symbol. - If T(q, a) = (q', a', d), - The next state is q', - The tape symbol is rewritten from a to a', - If d = L, the head moves to left one cell, - If d = R, the head moves to right one cell, and - If d = N, the head does not move. # Turing Machine Example (1) • The following Turing machine writes '1' when there is even number of '1's and '0' otherwise. $$M_3 = (\{_, 0, 1\}, \{q_0, q_1, q_2\}, T_3)$$ | T_3 | _ | 0 | 1 | |-------|---------------|----------------|--------------| | q_1 | $(q_0, 1, N)$ | $(q_1,_,R)$ | $(q_2,_,R)$ | | q_2 | $(q_0,0,N)$ | $(q_2, _, R)$ | $(q_1,_,R)$ | # Turing Machine Example (2) Write a Turing machine which reverse '1' and '0' (i.e. replace '1' with '0', and replace '0' with '1'). $$M_4 = (\{_, 0, 1\}, \{q_0, q_1\}, T_4)$$ | T_4 | _ | | | 0 | | | 1 | | | | | | |-------|---|---|---|---|---|---|---|---|---|---|---|---| | q_1 | (| , | , |) | (| , | , |) | (| , | , |) | # Turing Machine Example (3) • Write a Turing machine $M_5=(\{_,0,1\},\{q_0,q_1,q_2,\cdots\},T_5)$ which adds one to the binary number written on the tape. | T_5 | 1 | 0 | 1 | | | | |-------|---------|---------|---------|--|--|--| | q_1 | (, ,) | (, ,) | (, ,) | | | | | q_2 | (, ,) | (, ,) | (, ,) | | | | | q_3 | (, ,) | (, ,) | (, ,) | | | | # Turing Machine Example (4) • Write a Turing machine $M_6 = (\{_, 0, 1\}, \{q_0, q_1, q_2, \cdots\}, T_6)$ which subtracts one from the given binary number on the tape. | T_6 | _ | 0 | 1 | | | | |-------|---------|---------|---------|--|--|--| | q_1 | (, ,) | (, ,) | (, ,) | | | | | q_2 | (, ,) | (, ,) | (, ,) | | | | | q_3 | (, ,) | (, ,) | (, ,) | | | | ### Computation - A Turing machine M computes $f: \mathbb{N}^n \to \mathbb{N}$ when: - Place m_1, m_2, \cdots, m_n on the tape with decimal numbers separated with a blank - Start M with the head at the leftmost number position. - When M terminates, the number at the head is the decimal number of $f(m_1, m_2, \dots, m_n)$. ### Computation and Program - A Turing machine may not terminate. - The function it computes is not total, but partial. #### Theorem - If a Turing machine can compute $f: \mathbb{N}^n \to \mathbb{N}$, it can be computed by a while program. - If $f: N^n \to N$ is a recursive function, there is a Turing machine which can compute the same function. ### Summary - Finite State Automata - a finite set of states - a state transition function - Turing Machine - an infinite tape and a head - Computation - flow chart program - while program - recursive function - Turing machine