MATHEMATICS FOR INFORMATION SCIENCE NO.4 TURING MACHINE

Tatsuya Hagino hagino@sfc.keio.ac.jp

Slides URL

https://vu5.sfc.keio.ac.jp/slide/

So far

- Computation
 - flow chart program
 - while program
 - recursive function
 - primitive recursive function
 - minimization operator

Finite State Automata

- A Finite State Automaton $M = (Q, \Sigma, \delta, q_0, F)$
 - Q: a finite, non-empty set of states
 - Σ: the input alphabet (a finite, non-empty set of symbols)
 - δ : a state-transition function, $\delta: Q \times \Sigma \to Q$
 - q₀: an initial state, an element in Q
 - F: a set of final states, a (possibly empty) subset of Q

FA Example (1)

 An automaton which checks whether '1' appears even number of times in a string of '0' and '1'.

$$M_1 = (\{q_0, q_1\}, \{0,1\}, \delta_1, q_0, \{q_0\})$$

• Define δ_1 as follows:

$$\delta_1$$
: $\{q_0, q_1\} \times \{0, 1\} \rightarrow \{q_0, q_1\}$

$$\begin{cases} \delta_{1}(q_{0}, 0) = q_{0} \\ \delta_{1}(q_{0}, 1) = q_{1} \\ \delta_{1}(q_{1}, 0) = q_{1} \\ \delta_{1}(q_{1}, 1) = q_{0} \end{cases}$$

δ_1	0	1
q_0	q_0	q_1
q_1	q_1	q_0

State Transition

- Input "0101" to *M*₁
 - 0. The initial state is q_0
 - 1. Input 0 moves to $\delta_1(q_0, 0) = q_0$
 - 2. Input 1 moves to $\delta_1(q_0, 1) = q_1$
 - 3. Input 0 moves to $\delta_1(q_1, 0) = q_1$
 - 4. Input 1 moves to $\delta_1(q_1, 1) = q_0$
- The automaton M_1 accepts `0101' because $q_0 \in F$.

State Transition in General

- Change state according to input symbols in Σ
 - 0. The initial state is always q_0
 - 1. After receiving the first symbol a_1 , the state changes to $\delta(q_0, a_1) = q_1$
 - 2. After receiving the second symbol a_2 , the state changes to $\delta(q_1, a_2) = q_2$
 - 3. After receiving the third symbol a_3 , the state changes to $\delta(q_2, a_3) = q_3$
 - i. After receiving the i th symbol a_i , the state changes to $\delta(q_{i-1}, a_i) = q_i$
 - n. After receiving the n th symbol a_n , the state changes to $\delta(q_{n-1}, a_n) = q_n$
- M accepts $a_1 a_2 \cdots a_n$ when $q_n \in F$

$$q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \xrightarrow{a_3} q_3 \xrightarrow{a_i} q_i \xrightarrow{a_n} q_n \in F$$

Accepted Language

- Extend δ to a sequence of symbols:
 - $\delta(q, a_1 a_2 a_3 \cdots a_n) = \delta(\cdots \delta(\delta(\delta(q, a_1), a_2), a_3) \cdots, a_n)$
 - $\delta(q, \epsilon) = q$

where ϵ represents the empty sequence.

- M accepts $a_1 a_2 \cdots a_n$ when
 - $\delta(q_0, a_1 a_2 \cdots a_n) \in F$
- The language which $M = (Q, \Sigma, \delta, q_0, F)$ accepts can be defined as follows:
 - $L(M) = \{x \in \Sigma^* \mid \delta(q_0, x) \in F\}$

FA Example (2)

- Write the state diagram of the following machine.
 - $M_2 = (\{q_0, q_1, q_2\}, \{0,1\}, \delta_2, q_0, \{q_2\})$

δ_2	0	1
q_0	q_0	q_1
q_1	q_0	q_2
q_2	q_2	q_2

- What is the language $L(M_2)$ which M_2 accepts?
 - Accept when input

Turing Machine

- Alan Turing
 - British Mathematician (1912/6/23~1954/6/7)
 - "On Computable Numbers, with an Application to the Entscheidungsproblem", 1936/5/28
 - Entscheidungsproblem = decision problem
 - The Entscheidungsproblem = "ask for an algorithm that takes as input a statement of a first-order logic and answers "Yes" or "No" according to whether the statement is valid" by David Hilbert in 1928.
- Turing Machine
 - an infinite length tape
 - a head which can read data on the tape and moves left and right

Tape and Head

Tape

- One tape width infinite length for left and right
- The tape is divided into cells.
- Each cell holds a symbol (an alphabet or a blank symbol).

Head

- One head
- The head is on top of one cell.
- The head can read and write the symbol in the cell.
- The head can move left or right one cell at a time.
- The head has a state.
- The next state is determined by the current state and the symbol in the cell.

Formal Definition

- A Turing machine M consists of the following three things:
 - A finite set of tape symbols $A = \{a_0, a_1, \dots, a_{m-1}\}$
 - Let a_0 be the special symbol '_' for blank.
 - A finite set of states $Q = \{q_0, q_1, \dots, q_{l-1}\}$
 - q_1 is the initial state and q_0 is the final state.
 - A transition function $T: Q \times A \rightarrow Q \times A \times \{L, R, N\}$
 - Let q be the current state, and a be the tape symbol.
 - If T(q, a) = (q', a', d),
 - The next state is q',
 - The tape symbol is rewritten from a to a',
 - If d = L, the head moves to left one cell,
 - If d = R, the head moves to right one cell, and
 - If d = N, the head does not move.

Turing Machine Example (1)

• The following Turing machine writes '1' when there is even number of '1's and '0' otherwise.

$$M_3 = (\{_, 0, 1\}, \{q_0, q_1, q_2\}, T_3)$$

T_3	_	0	1
q_1	$(q_0, 1, N)$	$(q_1,_,R)$	$(q_2,_,R)$
q_2	$(q_0,0,N)$	$(q_2, _, R)$	$(q_1,_,R)$

Turing Machine Example (2)

Write a Turing machine which reverse '1' and '0' (i.e. replace '1' with '0', and replace '0' with '1').

$$M_4 = (\{_, 0, 1\}, \{q_0, q_1\}, T_4)$$

T_4	_			0			1					
q_1	(,	,)	(,	,)	(,	,)

Turing Machine Example (3)

• Write a Turing machine $M_5=(\{_,0,1\},\{q_0,q_1,q_2,\cdots\},T_5)$ which adds one to the binary number written on the tape.

T_5	1	0	1			
q_1	(, ,)	(, ,)	(, ,)			
q_2	(, ,)	(, ,)	(, ,)			
q_3	(, ,)	(, ,)	(, ,)			

Turing Machine Example (4)

• Write a Turing machine $M_6 = (\{_, 0, 1\}, \{q_0, q_1, q_2, \cdots\}, T_6)$ which subtracts one from the given binary number on the tape.

T_6	_	0	1			
q_1	(, ,)	(, ,)	(, ,)			
q_2	(, ,)	(, ,)	(, ,)			
q_3	(, ,)	(, ,)	(, ,)			

Computation

- A Turing machine M computes $f: \mathbb{N}^n \to \mathbb{N}$ when:
 - Place m_1, m_2, \cdots, m_n on the tape with decimal numbers separated with a blank
 - Start M with the head at the leftmost number position.
 - When M terminates, the number at the head is the decimal number of $f(m_1, m_2, \dots, m_n)$.

Computation and Program

- A Turing machine may not terminate.
 - The function it computes is not total, but partial.

Theorem

- If a Turing machine can compute $f: \mathbb{N}^n \to \mathbb{N}$, it can be computed by a while program.
- If $f: N^n \to N$ is a recursive function, there is a Turing machine which can compute the same function.

Summary

- Finite State Automata
 - a finite set of states
 - a state transition function
- Turing Machine
 - an infinite tape and a head
- Computation
 - flow chart program
 - while program
 - recursive function
 - Turing machine