MATHEMATICS FOR INFORMATION SCIENCE NO.5 TURING MACHINE AND COMPUTABILITY

Tatsuya Hagino hagino@sfc.keio.ac.jp

Slides URL

https://vu5.sfc.keio.ac.jp/slide/

So far

- Computation
 - flow chart program
 - while program
 - recursive function
 - primitive recursive function
 - minimization operator
 - Turing machine

Computation

- A Turing machine M computes $f: \mathbb{N}^n \to \mathbb{N}$ when:
 - Place m_1, m_2, \cdots, m_n on the tape with decimal numbers separated with a blank
 - Start M with the head at the leftmost number position.
 - When M terminates, the number at the head is the decimal number of $f(m_1, m_2, \dots, m_n)$.

Computation and Program

- A Turing machine may not terminate.
 - The function it computes is not total, but partial.

Theorem

- If a Turing machine can compute $f: \mathbb{N}^n \to \mathbb{N}$, it can be computed by a while program.
- If $f: N^n \to N$ is a recursive function, there is a Turing machine which can compute the same function.

Decidable vs Undecidable Problems

Decidable Problem

- A problem for which a program can say yes or no.
- The program needs to terminate.
- The corresponding recursive function needs to be total.

Undecidable Problem

- A problem which is not decidable.
- There might be a program which may say yes, but it does not termination if the answer is no.
- The corresponding function is not recursive, or it is recursive but not total.

Halting Problem:

• Is there a program which tells whether a given program P for a given input a_1, \ldots, a_n will eventually terminate and return a value or will run forever?

Encoding Programs

- In order to make a program as an input to another program, we need to represent a program as a number (i.e. encoding)
- Encoding flow chart programs:
 - Boxes are connected by arrows
 - Put a number to each box
 - Each box is one of the following:
 - input(x_1, x_2, \dots, x_n)
 - $x_i := m$
 - $x_i := x_i + x_k$
 - $x_i := x_j x_k$
 - $x_i := x_i \times x_k$
 - $x_i := x_j \div x_k$
 - if $(x_i = x_i)$
 - $output(x_i)$

Encoding

- Let $x_1, ..., x_n$ be input variables and $x_{n+1}, x_{n+2}, ..., x_t$ be other variables.
- Let $A_1, A_2, ..., A_l$ be boxes of program P where A_1 is the input box and A_l is the output box.
- Using Gödel number, encode each box as #A:

A_a	$\#A_a$
$input(x_1, x_2, \dots, x_n)$	$\langle 1, n, a' \rangle$
$x_i := m$	$\langle 2, i, m, a' \rangle$
$x_i := x_j + x_k$	$\langle 3, i, j, k, a' \rangle$
$x_i := x_j - x_k$	$\langle 4, i, j, k, \alpha' \rangle$
$x_i := x_j \times x_k$	$\langle 5, i, j, k, \alpha' \rangle$
$x_i := x_j \div x_k$	$\langle 6, i, j, k, \alpha' \rangle$
$if (x_i = x_j)$	$\langle 7, i, j, a', a'' \rangle$
$\operatorname{output}(x_i)$	⟨8, i⟩

- The program can be encoded as:
 - $\#P = \langle \#A_1, \#A_2, ..., \#A_l \rangle$

Interpreter for P

Theorem:

• The following partial function $comp_n: N^{n+1} \to N$ is computable.

$$\operatorname{comp}_n(z,x_1,\ldots,x_n) = \begin{cases} y & \text{when } z = \#P \text{ and } y = f_P(x_1,\ldots x_n) \\ & \text{undefined otherwise} \end{cases}$$

where f_P is the recursive function for program P.

Proof:

• Write a program which computes $comp_n$ by simulating the flow chart program represented by #P.

$comp_n(z, x_1, ..., x_n)$

$comp_n(z, x_1, ..., x_n)$ cont.

Is comp Total?

Theorem: If comp_n: $N^{n+1} \rightarrow N$ is extended to a total function $g: N^{n+1} \rightarrow N$

g is not recursive.

Proof:

- Show the case for n = 1:
- Proof by contradiction and use Cantor's diagonal argument.
- Assume $comp_1(z, x) = g(z, x)$ and $g: N^2 \to N$ is a total recursive function.
- Let h(x) = g(x, x) + 1. Then, h is also a total recursive function.
- There is a program which calculates h.
- Let c be the code.
- Then, from the definition of $comp_1$, $h(x) = comp_1(c, x)$.
- Give h an input c.

$$h(c) = comp_1(c, c) = g(c, c)$$

- This contradicts with h(c) = g(c, c) + 1.
- Therefore, a recursive total function *g* does not exist. (QED)

Recursive Predicate

Definition: Predicate $p: N^n \to \{T, F\}$ is a recursive predicate if its characteristic function $C_p: N^n \to N$ is recursive.

- C_p is total.
- p is decidable.
- If $p(x_1, ..., x_n)$, $q(x_1, ..., x_n)$ and $r(x_1, ..., x_n, y)$ are recursive, the following predicates are also recursive:
 - $p(x_1, \dots, x_n) \wedge q(x_1, \dots, x_n)$
 - $p(x_1, \dots, x_n) \vee q(x_1, \dots, x_n)$
 - $\neg p(x_1, ..., x_n)$
 - $\forall z < y(r(x_1, ..., x_n, z))$
 - $\exists z < y(r(x_1, \dots, x_n, z))$

Halting Problem is Undecidable

• Define predicate $halt_n(z, x_1, ..., x_n) : N^{n+1} \to \{T, F\}$ as follows:

$$\operatorname{halt}_n(z,x_1,\ldots,x_n) = \begin{cases} T & \text{when } \operatorname{comp}_n(z,x_1,\ldots,x_n) \text{ is defined} \\ F & \text{when } \operatorname{comp}_n(z,x_1,\ldots,x_n) \text{ is undefined} \end{cases}$$

Theorem: halt_n $(z, x_1, ..., x_n)$ is not recursive (i.e. undecidable).

Proof:

• If $halt_n(z,x_1,\dots,x_n)$ is a recursive predicate, its characteristic function C_{halt_n} is recursive and total. Then,

$$g(z, x_1, \dots, x_n) = C_{\text{halt}_n}(z, x_1, \dots, x_n) \times \text{comp}_n(z, x_1, \dots, x_n)$$

is a total recursive function and this contradicts with the previous theorem. (QED)

Totality Problem is Undecidable

Theorem: For n > 0, there is no total recursive function $g: N^{n+1} \to N$ which satisfies the following:

$$\{g(c, x_1, ..., x_n): N^{n+1} \rightarrow N \mid c \in N\} = \{f: N^n \rightarrow N \mid f \text{ is total and recursive}\}$$

• comp_n(z, x_1 , ..., x_n): $N^{n+1} \to N$ is the universal function for recursive functions (both partial and total), but there is no universal function for total recursive functions.

Proof:

- In the case for n = 1, if $g: N^2 \to N$ exists, f(x) = g(x, x) + 1 is a total recursive function.
- Let c be the code of f, g(c,x) = f(x) = g(x,x) + 1 and this contradicts when x = c.
- In the case for n > 1, the proof can be similar. (QED).

Corollary: $total_n(z) \equiv \forall x_1 \cdots \forall x_n (halt_n(z, x_1, ..., x_n))$ is not a recursive predicate, i.e. $total_n(z)$ is undecidable.

Proof: If C_{total_n} is the characteristic function of total_n,

$$g(z, x_1, \dots, x_n) = C_{\text{total}_n}(z) \times \text{comp}_n(z, x_1, \dots, x_n)$$

g is a total recursive function and this contradicts with previous theorem. (QED)

Undecidable Predicates

- halt_n $(z, x_1, ..., x_n)$
 - whether a give program z terminates for the input $x_1, ..., x_n$ or not.
- $total_n(z)$
 - whether a given program z always terminates or not.
- $\forall x_1 \cdots \forall x_n (\text{comp}_n(z, x_1, \dots, x_n) = 0)$
 - whether a given program z always outputs 0 or not.
- $\exists x_1 \cdots \exists x_n (\text{comp}_n(z, x_1, \dots, x_n) = 0)$
 - whether a given program z outputs 0 for some input or not.
- For z, the domain of comp_n $(z, x_1, ..., x_n)$ is finite.
 - whether a program z terminates for finite sets of input or not.
- For z, comp_n(z, x_1 , ..., x_n) is a constant function.
 - whether a program z outputs always the same number or not.
- For z and z', comp_n $(z, x_1, ..., x_n) = \text{comp}_n(z', x_1, ..., x_n)$
 - whether two programs z and z' are same or not.

s-m-n Theorem

• A₁

Theorem: For natural numbers m and n, there is a primitive recursive function $S_{m,n}: N^{m+1} \to N$ which satisfies:

$$comp_{m+n}(z, x_1, ..., x_n, y_1, ..., y_m) = comp_n(S_{m,n}(z, y_1, ..., y_m), x_1, ..., x_n))$$

```
Proof: S_{m,n}(z,u_1,\ldots,u_m) is the function which converts z=\langle\#A_1,\#A_2,\ldots,\#A_l\rangle into z'=\big(\#\big(\mathrm{input}(x_1,\ldots,x_n)\big),\#(y_1\coloneqq u_1),\ldots,\#(y_m\coloneqq u_m),\#A_2,\ldots,\#A_l\big) which represents:
    • \mathrm{input}(x_1,\ldots,x_n)
    • y_1\coloneqq u_1
    • \cdots
    • y_m\coloneqq u_m
    • A_2
```

The conversion function can be written as a primitive recursive function. (QED)

Recursion Theorem

Theorem: For n and a total recursive function $f: N \to N$, there is a natural number c which makes the following equation true:

$$comp_n(f(c), x_1, \dots, x_n) = comp_n(c, x_1, \dots, x_n)$$

Proof:

- Let a be the code for comp_{n+1} $(y, x_1, ..., x_n, y)$.
- $\operatorname{comp}_{n+1}(y, x_1, ..., x_n, y) = \operatorname{comp}_{n+1}(a, x_1, ..., x_n, y) = \operatorname{comp}_n(S_{1,n}(a, y), x_1, ..., x_n)$
- Let b be the code for comp_n $(f(S_{1,n}(a,y)), x_1, ..., x_n)$
- $comp_n(f(S_{1,n}(a,y)), x_1, ..., x_n) = comp_{n+1}(b, x_1, ..., x_n, y)$
- $\operatorname{comp}_n(f(S_{1,n}(a,b)), x_1, ..., x_n) = \operatorname{comp}_{n+1}(b, x_1, ..., x_n, b) = \operatorname{comp}_n(S_{1,n}(a,b), x_1, ..., x_n)$
- $c = S_{1,n}(a,b)$ (QED)

Rice Theorem

Theorem: Let n be a natural number. If a predicate p(z) satisfies the following two conditions, p(z) is not recursive (i.e. p(z) is undecidable).

- (1) $\forall c \forall c' \left(\forall x_1 \dots \forall x_n \left(\text{comp}_n(c, x_1, \dots, x_n) = \text{comp}_n(c', x_1, \dots, x_n) \right) \Rightarrow p(c) \equiv p(c') \right)$
- (2) $\exists c \exists c' (p(c) \land \neg p(c'))$
- (1) means that p(z) truth value is the same for the same program.
- (2) means that p(z) is true for certain number and is false for a different number.

Proof:

- If p is a recursive predicate, let C_p be its characteristic function.
- Let define $f: N \to N$ using c and c' which satisfy (2) as follows:

$$f(z) = C_p(z) \times c' + (1 - C_p(z)) \times c$$

- From the definition, $p(f(z)) \not\equiv p(z)$
- Since f is a total recursive function, using recursion theory there exists c'' which makes $\text{comp}_n(f(c''), x_1, \dots, x_n) = \text{comp}_n(c'', x_1, \dots, x_n)$.
- From (1), $p(f(c'')) \equiv p(c'')$, but this contradicts. (QED)
- Using this theorem, we can prove many predicates are undecidable.
 - $p(z) \equiv \text{"comp}_n(z, x_1, ..., x_n)$ is a constant function."
 - p(z) is same for the same program, and there are a constant program and a not-constant one.

Post Correspondence Problem

Problem: Given a finite set of string pairs,

$$\{(s_1, t_1), (s_2, t_2), \dots, (s_n, t_n)\}$$

using string concatenation, determine whether there is a number sequence $i_1, ..., i_m$ which makes the following equality hold:

$$s_{i_1}s_{i_2}\dots s_{i_m} = t_{i_1}t_{i_2}\dots t_{i_m}$$

Example:

• {(e, abcde), (ababc, ab), (d, cab)}

- This problem (post correspondence problem) is undecidable.
 - There is no program which gives a solution to the problem or none if there is no solution.

Summary

- Decidable Problem
 - A problem for which a program can say yes or no.
- Undecidable Problem
 - A problem which is not decidable.
- Undecidable predicates:
 - Halting problem
 - Totality problem
 - Post correspondence problem