
MATHEMATICS FOR INFORMATION SCIENCE

NO.5 TURING MACHINE AND COMPUTABILITY

Tatsuya Hagino

hagino@sfc.keio.ac.jp

1

https://vu5.sfc.keio.ac.jp/slide/

Slides URL

So far

• Computation

• flow chart program

• while program

• recursive function

• primitive recursive function

• minimization operator

• Turing machine

2

flow chart

while program

recursive function

Turing machine

lambda calculus

Computation

• A Turing machine 𝑀 computes 𝑓:𝑁𝑛 → 𝑁 when:

• Place 𝑚1, 𝑚2, ⋯ ,𝑚𝑛 on the tape with decimal numbers separated

with a blank

• Start 𝑀 with the head at the leftmost number position.

3

𝑚2 ⋯ 𝑚𝑛 ⋯𝑚1 ⋯

𝑞1

𝑚 ⋯

𝑞0

• When 𝑀 terminates, the number at the head is the decimal number

of 𝑓(𝑚1, 𝑚2, ⋯ ,𝑚𝑛).

Computation and Program

• A Turing machine may not terminate.

• The function it computes is not total, but partial.

4

while program

recursive function

Turing machine

• Theorem
• If a Turing machine can compute 𝑓:𝑁𝑛 → 𝑁, it can be computed by

a while program.

• If 𝑓:𝑁𝑛 → 𝑁 is a recursive function, there is a Turing machine which
can compute the same function.

Decidable vs Undecidable Problems

• Decidable Problem

• A problem for which a program can say yes or no.

• The program needs to terminate.

• The corresponding recursive function needs to be total.

5

Undecidable Problems

Decidable

Problems

• Undecidable Problem
• A problem which is not decidable.

• There might be a program which may say yes, but it does not
termination if the answer is no.

• The corresponding function is not recursive, or it is recursive but
not total.

• Halting Problem:
• Is there a program which tells whether a given program 𝑃 for a

given input 𝑎1, … , 𝑎𝑛 will eventually terminate and return a value or
will run forever?

• In order to make a program as an input to another program, we

need to represent a program as a number (i.e. encoding)

Encoding Programs

6

• Encoding flow chart programs:
• Boxes are connected by arrows

• Put a number to each box

• Each box is one of the following:

• input(𝑥1, 𝑥2, ⋯ , 𝑥𝑛)

• 𝑥𝑖 ∶= 𝑚

• 𝑥𝑖 ∶= 𝑥𝑗 + 𝑥𝑘

• 𝑥𝑖 ∶= 𝑥𝑗 − 𝑥𝑘

• 𝑥𝑖 ∶= 𝑥𝑗 × 𝑥𝑘

• 𝑥𝑖 ∶= 𝑥𝑗 ÷ 𝑥𝑘

• if 𝑥𝑖 = 𝑥𝑗

• output(𝑥𝑖)

Encoding
• Let 𝑥1, … , 𝑥𝑛 be input variables and 𝑥𝑛+1, 𝑥𝑛+2, … , 𝑥𝑡 be other variables.

• Let 𝐴1, 𝐴2, … , 𝐴𝑙 be boxes of program 𝑃 where 𝐴1 is the input box and 𝐴𝑙 is the output

box.

7

𝐴𝑎 #𝐴𝑎

input(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) 1, 𝑛, 𝑎′

𝑥𝑖 ∶= 𝑚 2, 𝑖,𝑚, 𝑎′

𝑥𝑖 ∶= 𝑥𝑗 + 𝑥𝑘 3, 𝑖, 𝑗, 𝑘, 𝑎′

𝑥𝑖 ∶= 𝑥𝑗 − 𝑥𝑘 4, 𝑖, 𝑗, 𝑘, 𝑎′

𝑥𝑖 ∶= 𝑥𝑗 × 𝑥𝑘 5, 𝑖, 𝑗, 𝑘, 𝑎′

𝑥𝑖 ∶= 𝑥𝑗 ÷ 𝑥𝑘 6, 𝑖, 𝑗, 𝑘, 𝑎′

if 𝑥𝑖 = 𝑥𝑗 7, 𝑖, 𝑗, 𝑎′, 𝑎′′

output(𝑥𝑖) 8, 𝑖

• The program can be encoded as:

• #𝑃 = #𝐴1, #𝐴2, … , #𝐴𝑙

• Using Gödel number, encode each box as #𝐴:

Interpreter for 𝑃

Theorem:

• The following partial function comp𝑛: 𝑁
𝑛+1 → 𝑁 is computable.

8

comp𝑛 𝑧, 𝑥1, … , 𝑥𝑛 =

𝑦 when 𝑧 = #𝑃 and 𝑦 = 𝑓𝑃(𝑥1, … 𝑥𝑛)

undefined otherwise

where 𝑓𝑃 is the recursive function for program 𝑃.

Proof:

• Write a program which computes comp𝑛 by simulating the flow
chart program represented by #𝑃.

comp𝑛(𝑧, 𝑥1,… , 𝑥𝑛)

9

input(𝑧, 𝑥1, 𝑥2, ⋯ , 𝑥𝑛)

𝑎 ≔ 1
𝑣 ≔ 0

𝑏 ≔ 𝐺𝑎 𝑧
𝑐 ≔ 𝐺1 𝑏

𝑐 = 1
yes

no

𝑐 = 2

𝑖 ≔ 𝐺2(𝑏)
𝑚 ≔ 𝐺3(𝑏)

𝑣 ≔ 𝐺 𝐺1 𝑣 ,… ,𝑚,… , 𝐺𝑛 𝑣

𝑎 ≔ 𝐺4 𝑏

𝑛 ≔ 𝐺2(𝑏)
𝑣 ≔ 𝐺(𝑥1, … , 𝑥𝑛, 0, … , 0)

𝑎 ≔ 𝐺3 𝑏

𝑐 = 3

𝑖 ≔ 𝐺2(𝑏)
𝑗 ≔ 𝐺3(𝑏)
𝑘 ≔ 𝐺4 𝑏

𝑣 ≔ 𝐺 𝐺1 𝑣 ,… , 𝐺𝑖 𝑣 + 𝐺𝑗(𝑣), … , 𝐺𝑛 𝑣

𝑎 ≔ 𝐺5 𝑏

no

no

yes

yes

comp𝑛(𝑧, 𝑥1,… , 𝑥𝑛) cont.

10

𝑐 =4
yes

no

𝑐 = 5

𝑖 ≔ 𝐺2(𝑏)
𝑗 ≔ 𝐺3(𝑏)
𝑘 ≔ 𝐺4 𝑏

𝑣 ≔ 𝐺 𝐺1 𝑣 ,… , 𝐺𝑖 𝑣 × 𝐺𝑗(𝑣), … , 𝐺𝑛 𝑣

𝑎 ≔ 𝐺5 𝑏

𝑖 ≔ 𝐺2(𝑏)
𝑗 ≔ 𝐺3(𝑏)
𝑘 ≔ 𝐺4 𝑏

𝑣 ≔ 𝐺 𝐺1 𝑣 ,… , 𝐺𝑖 𝑣 − 𝐺𝑗(𝑣), … , 𝐺𝑛 𝑣

𝑎 ≔ 𝐺5 𝑏

𝑐 = 6

𝑖 ≔ 𝐺2(𝑏)
𝑗 ≔ 𝐺3(𝑏)
𝑘 ≔ 𝐺4 𝑏

𝑣 ≔ 𝐺 𝐺1 𝑣 ,… , 𝐺𝑖 𝑣 ÷ 𝐺𝑗(𝑣), … , 𝐺𝑛 𝑣

𝑎 ≔ 𝐺5 𝑏

no

no

yes

yes

𝑐 = 7
𝑖 ≔ 𝐺2(𝑏)
𝑗 ≔ 𝐺3(𝑏)

𝐺𝑖 𝑣 = 𝐺𝑗(𝑣)

𝑎 ≔ 𝐺5 𝑏

𝑎 ≔ 𝐺4 𝑏
yes yes

no
no

𝑖 ≔ 𝐺2(𝑏)
output(𝐺𝑖 𝑣)

Is comp Total?
Theorem: If comp𝑛: 𝑁

𝑛+1 → 𝑁 is extended to a total function

𝑔:𝑁𝑛+1 → 𝑁
𝑔 is not recursive.

11

Proof:

• Show the case for 𝑛 = 1:

• Proof by contradiction and use Cantor’s diagonal argument.

• Assume comp1 𝑧, 𝑥 = 𝑔(𝑧, 𝑥) and 𝑔:𝑁2 → 𝑁 is a total recursive function.

• Let ℎ 𝑥 = 𝑔 𝑥, 𝑥 + 1. Then, ℎ is also a total recursive function.

• There is a program which calculates ℎ.

• Let 𝑐 be the code.

• Then, from the definition of comp1, ℎ 𝑥 = comp1(𝑐, 𝑥).

• Give ℎ an input 𝑐.

ℎ 𝑐 = comp1 𝑐, 𝑐 = 𝑔(𝑐, 𝑐)

• This contradicts with ℎ 𝑐 = 𝑔 𝑐, 𝑐 + 1.

• Therefore, a recursive total function 𝑔 does not exist. (QED)

Recursive Predicate
Definition: Predicate 𝑝:𝑁𝑛 → 𝑇, 𝐹 is a recursive predicate if its

characteristic function 𝐶𝑝: 𝑁
𝑛 → 𝑁 is recursive.

• 𝐶𝑝 is total.

• 𝑝 is decidable.

12

• If 𝑝 𝑥1, … , 𝑥𝑛 , 𝑞(𝑥1, … , 𝑥𝑛) and 𝑟 𝑥1, … , 𝑥𝑛, 𝑦 are recursive, the
following predicates are also recursive:

• 𝑝(𝑥1, … , 𝑥𝑛) ∧ 𝑞(𝑥1, … , 𝑥𝑛)

• 𝑝(𝑥1, … , 𝑥𝑛) ∨ 𝑞(𝑥1, … , 𝑥𝑛)

• ¬𝑝 𝑥1, … , 𝑥𝑛

• ∀𝑧 < 𝑦 𝑟 𝑥1, … , 𝑥𝑛, 𝑧

• ∃𝑧 < 𝑦 𝑟 𝑥1, … , 𝑥𝑛, 𝑧

Halting Problem is Undecidable

• Define predicate haltn 𝑧, 𝑥1, … , 𝑥𝑛 ∶ 𝑁𝑛+1 → {𝑇, 𝐹} as follows:

13

halt𝑛 𝑧, 𝑥1, … , 𝑥𝑛 =

𝑇 when comp𝑛 𝑧, 𝑥1, … , 𝑥𝑛 is defined

𝐹 when comp𝑛 𝑧, 𝑥1, … , 𝑥𝑛 is undefined

Theorem: haltn 𝑧, 𝑥1, … , 𝑥𝑛 is not recursive (i.e. undecidable).

Proof:

• If halt𝑛 𝑧, 𝑥1, … , 𝑥𝑛 is a recursive predicate, its characteristic function
𝐶halt𝑛 is recursive and total. Then,

𝑔 𝑧, 𝑥1, … , 𝑥𝑛 = 𝐶halt𝑛 𝑧, 𝑥1, … , 𝑥𝑛 × comp𝑛 𝑧, 𝑥1, … , 𝑥𝑛

is a total recursive function and this contradicts with the previous
theorem. (QED)

Totality Problem is Undecidable
Theorem: For 𝑛 > 0, there is no total recursive function 𝑔:𝑁𝑛+1 → 𝑁 which satisfies the
following:

𝑔 𝑐, 𝑥1, … , 𝑥𝑛 : 𝑁𝑛+1 → 𝑁 𝑐 ∈ 𝑁 = 𝑓:𝑁𝑛 → 𝑁 𝑓 is total and recursive }

• comp𝑛 𝑧, 𝑥1, … , 𝑥𝑛 : 𝑁𝑛+1 → 𝑁 is the universal function for recursive functions (both partial
and total), but there is no universal function for total recursive functions.

14

Proof:

• In the case for 𝑛 = 1, if 𝑔:𝑁2 → 𝑁 exists, 𝑓 𝑥 = 𝑔 𝑥, 𝑥 + 1 is a total recursive function.

• Let 𝑐 be the code of 𝑓, 𝑔 𝑐, 𝑥 = 𝑓 𝑥 = 𝑔 𝑥, 𝑥 + 1 and this contradicts when 𝑥 = 𝑐.

• In the case for 𝑛 > 1, the proof can be similar. (QED).

Corollary: total𝑛(𝑧) ≡ ∀𝑥1⋯∀𝑥𝑛 halt𝑛 𝑧, 𝑥1, … , 𝑥𝑛 is not a recursive predicate, i.e.
total𝑛(𝑧) is undecidable.

Proof: If 𝐶total𝑛 is the characteristic function of total𝑛,

𝑔 𝑧, 𝑥1, … , 𝑥𝑛 = 𝐶total𝑛(𝑧) × comp𝑛 𝑧, 𝑥1, … , 𝑥𝑛

𝑔 is a total recursive function and this contradicts with previous theorem. (QED)

Undecidable Predicates
• halt𝑛 𝑧, 𝑥1, … , 𝑥𝑛

• whether a give program 𝑧 terminates for the input 𝑥1, … , 𝑥𝑛 or not.

• total𝑛(𝑧)
• whether a given program 𝑧 always terminates or not.

• ∀𝑥1⋯∀𝑥𝑛 comp𝑛 𝑧, 𝑥1, … , 𝑥𝑛 = 0
• whether a given program 𝑧 always outputs 0 or not.

• ∃𝑥1⋯∃𝑥𝑛 comp𝑛 𝑧, 𝑥1, … , 𝑥𝑛 = 0
• whether a given program 𝑧 outputs 0 for some input or not.

• For 𝑧, the domain of comp𝑛 𝑧, 𝑥1, … , 𝑥𝑛 is finite.
• whether a program 𝑧 terminates for finite sets of input or not.

• For 𝑧, comp𝑛 𝑧, 𝑥1, … , 𝑥𝑛 is a constant function.
• whether a program 𝑧 outputs always the same number or not.

• For 𝑧 and 𝑧′, comp𝑛 𝑧, 𝑥1, … , 𝑥𝑛 = comp𝑛 𝑧′, 𝑥1, … , 𝑥𝑛
• whether two programs 𝑧 and 𝑧′ are same or not.

15

s-m-n Theorem
Theorem: For natural numbers 𝑚 and 𝑛, there is a primitive recursive

function 𝑆𝑚,𝑛: 𝑁
𝑚+1 → 𝑁 which satisfies:

comp𝑚+𝑛 𝑧, 𝑥1, … , 𝑥𝑛 , 𝑦1, … , 𝑦𝑚 = comp𝑛 𝑆𝑚,𝑛(𝑧, 𝑦1, … , 𝑦𝑚), 𝑥1, … , 𝑥𝑛)

16

Proof: 𝑆𝑚,𝑛(𝑧, 𝑢1, … , 𝑢𝑚) is the function which converts

𝑧 = #𝐴1, #𝐴2, … , #𝐴𝑙
into

𝑧′ = # input 𝑥1, … , 𝑥𝑛 , #(𝑦1≔ 𝑢1), … , #(𝑦𝑚≔ 𝑢𝑚), #𝐴2, … , #𝐴𝑙
which represents:

• input 𝑥1, … , 𝑥𝑛
• 𝑦1 ≔ 𝑢1
• ⋯

• 𝑦𝑚 ≔ 𝑢𝑚
• 𝐴2
• ⋯

• 𝐴𝑙
The conversion function can be written as a primitive recursive function. (QED)

Recursion Theorem
Theorem: For 𝑛 and a total recursive function 𝑓:𝑁 → 𝑁, there is a natural
number 𝑐 which makes the following equation true:

comp𝑛 𝑓 𝑐 , 𝑥1, … , 𝑥𝑛 = comp𝑛 𝑐, 𝑥1, … , 𝑥𝑛

17

Proof:

• Let 𝑎 be the code for comp𝑛+1 𝑦, 𝑥1, … , 𝑥𝑛, 𝑦 .

• comp𝑛+1 𝑦, 𝑥1, … , 𝑥𝑛, 𝑦 = comp𝑛+1 𝑎, 𝑥1, … , 𝑥𝑛, 𝑦 =

comp𝑛 𝑆1,𝑛 𝑎, 𝑦 , 𝑥1, … , 𝑥𝑛

• Let 𝑏 be the code for comp𝑛 𝑓 𝑆1,𝑛 𝑎, 𝑦 , 𝑥1, … , 𝑥𝑛

• comp𝑛 𝑓 𝑆1,𝑛 𝑎, 𝑦 , 𝑥1, … , 𝑥𝑛 = comp𝑛+1 𝑏, 𝑥1, … , 𝑥𝑛 , 𝑦

• comp𝑛 𝑓 𝑆1,𝑛 𝑎, 𝑏 , 𝑥1, … , 𝑥𝑛 = comp𝑛+1 𝑏, 𝑥1, … , 𝑥𝑛, 𝑏 =

comp𝑛 𝑆1,𝑛 𝑎, 𝑏 , 𝑥1, … , 𝑥𝑛

• 𝑐 = 𝑆1,𝑛 𝑎, 𝑏

(QED)

Rice Theorem
Theorem: Let 𝑛 be a natural number. If a predicate 𝑝(𝑧) satisfies the following two conditions,
𝑝(𝑧) is not recursive (i.e. 𝑝(𝑧) is undecidable).

(1) ∀𝑐∀𝑐′ ∀𝑥1⋯∀𝑥𝑛 comp𝑛(𝑐, 𝑥1, … , 𝑥𝑛) = comp𝑛 𝑐′, 𝑥1, … , 𝑥𝑛 ⇒ 𝑝 𝑐 ≡ 𝑝 𝑐′

(2) ∃𝑐∃𝑐′ 𝑝 𝑐 ∧ ¬𝑝 𝑐′

• (1) means that 𝑝(𝑧) truth value is the same for the same program.

• (2) means that 𝑝(𝑧) is true for certain number and is false for a different number.

18

Proof:

• If 𝑝 is a recursive predicate, let 𝐶𝑝 be its characteristic function.

• Let define 𝑓:𝑁 → 𝑁 using 𝑐 and 𝑐′ which satisfy (2) as follows:

𝑓 𝑧 = 𝐶𝑝 𝑧 × 𝑐′ + 1 − 𝐶𝑝 𝑧 × 𝑐

• From the definition, 𝑝 𝑓 𝑧 ≢ 𝑝 𝑧
• Since 𝑓 is a total recursive function, using recursion theory there exists 𝑐′′ which

makes comp𝑛 𝑓 𝑐′′ , 𝑥1, … , 𝑥𝑛 = comp𝑛(𝑐
′′, 𝑥1, … , 𝑥𝑛).

• From (1), 𝑝(𝑓(𝑐′′)) ≡ 𝑝(𝑐′′), but this contradicts. (QED)

• Using this theorem, we can prove many predicates are undecidable.
• 𝑝(𝑧) ≡ "comp𝑛 𝑧, 𝑥1, … , 𝑥𝑛 is a constant function."
• 𝑝(𝑧) is same for the same program, and there are a constant program and a not-constant one.

Post Correspondence Problem

Problem: Given a finite set of string pairs,

𝑠1, 𝑡1 , 𝑠2, 𝑡2 , … , 𝑠𝑛, 𝑡𝑛
using string concatenation, determine whether there is a
number sequence 𝑖1, … , 𝑖𝑚 which makes the following
equality hold:

𝑠𝑖1𝑠𝑖2 …𝑠𝑖𝑚 = 𝑡𝑖1𝑡𝑖2 …𝑡𝑖𝑚

19

Example:

• {(𝑒, 𝑎𝑏𝑐𝑑𝑒), (𝑎𝑏𝑎𝑏𝑐, 𝑎𝑏), (𝑑, 𝑐𝑎𝑏)}

• This problem (post correspondence problem) is undecidable.

• There is no program which gives a solution to the problem or none if
there is no solution.

𝑎 𝑏
𝑎 𝑏 𝑎 𝑏 𝑐 𝑎 𝑏 𝑎 𝑏 𝑐

𝑎 𝑏
𝑑

𝑐 𝑎 𝑏
𝑒

𝑎 𝑏 𝑐 𝑑 𝑒

Summary

• Decidable Problem

• A problem for which a program can say yes or no.

• Undecidable Problem

• A problem which is not decidable.

• Undecidable predicates:

• Halting problem

• Totality problem

• Post correspondence problem

20

